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Preface

The purpose of this study was to develop a methodology for
detecting significant outliers in time series data that would either
compliment or supplaht the procedure currently in place at the Air Force
Technical Applicatlbns Center (AFTAC). I wish to thank AFTAC for their
subport in providing this topic and the data. I am especially indebted to’

Captain Russell Tinsley, my contact at AFTAC, for his aid and support in

this effort. ‘
My sincere thanks go out to my advisor, Dr. Kirk A. Mathews for

his continued guidance throughout this project and his foresight to allow

this project to take place. I am indebted to Dr. Peter J. Rbusseeuw. upon
whose work and book my methodology is based. 1 am esp_ccia]ly grateful
to Dr. Rousseeuw for providirig the PROGRESS software that allowed me
to complete this undertaking. | | . |
Finally, I am especially grateful to my wife, Linda, and children,
Alicia and Kristopher, whose patience and understanding guided me

throughout this long task.
Keri Robinson

A

o




Table of Contents
Preface...cc.uviiiiiiiiitiiii e ii
List of Figures.........ccccocenenenn, ettt e e e e et neeaeene v
List 0f Tables..........eueueeemeremrerneeerreeeeseenens reereerer b et teare e areresreennas vii
List of Symbols ................................................. viii
ADSETACE ....ciiuiieiiiiiriiiceineiiiniieeeeeeteareneeseensensessssnsnnesresnsreeesernnsessannsasans ix
INtroduction.......cociviiiiiiiiiiiiiiie e s s saassenneseee veean 1
Research Problem.......cooocvviiiiiiiiiiiniinninincncrinninneenee. 1
Research ObjJEctiVe ........civviiiviiiiiiiiiriiiinieein e cree e eeenreesnnans 2
Scope, Limitations, and Assumptions ...........cccccevuieencennnenns eeeaens 2
Or~anizational Overvﬂ‘ew ............................................................ 3
B& . kground................. e e 5
INtroducCtion ........coiiiiiiiiiiiiiiiiinirueeiriiesieereereeeieesenesernneseeneesnnnnns 6
Time Series Analysns .................................................................. 6
Recursive Rejection w/o Regression Method of Analysis............. 10
Previously Proposed Methods of Analysis ................................... 15
LIMItations .......ccocciiibiiiiiiiiiiiiiiiiiniiininsnienesinien e ceenneeeneenes 21
Summary ................. L ................................................................ 24
III. Theoretical Devclopmerit......_ ................... ereerbererranreeaarenenraes 25
Introduction .............leeevvennnen. eereraaans terreesrassrarsteesraesensssnsransans 25
Procedure Developmeht ................................. erreesersineresenesancanes 26
Probl.ms with the Least Squares (LS) Regression..............cccuvue. 30
The Least Median of équared Residuals (LMS) Algorithm ........... 33
Weighting and Least SQUATES. . u...c.evveververeeerseereresseesssseseessseeseenes 38
Reweighted Least SQUATES ........cccivvrveererinrneeereesrernneereecossssnenees 39
Avalilable Codes ........ccccceevunnnnnenne. rersessrtestenssrarertestarseststseasnnannnsne 41
SUMMEATIY ..oiiiiiniiiiiiiiiiiiinieniieritinmsssissesssessesnssssesssnnssesnssesssassnns 42
IV. Test Mcthodology..........................................; ............................. 43
INtroduction .......cooiiiiuiiiiiiiiiiiiiiiiieiiereicrerreererrrne e ene e s eaaaes 43
TeSt Data.....ccuuiiiinniiiiiiiiiiiiiiiriiiiiiiieisnnertneteraressencsssnnseseensennones 44
Autoregressive Order Identification ..........ccccevvenerirvieiiinnieniennnnne. 48
ConNCIUSIONS.....uuiiiiiiiiiiiiiii e ereneereraees s rereeesessaeeeenns 58
V. RESUILS c.uuiiiiiiiiiiiiiiiiiriinicercreeeecetttnessesetensesreransessensnesessssanseessanes 60
Analysis of Graphical Displays.........cccceeuennne. resrerseeraeetetenennnnee 61
Confidence TESLS ......ccivvruurrieriirierreennreesrererenruirerererrsseneensecerenns 61

fii

)0
i




Method Comparison ....................... 66

SubSet ANAIYSIS .ouivieiiiiiiiiiiniiieiriiieriirereeereerrierantrrenssnerasaresans 70
SUMIMATY cieiiiiiiiiiiiciiiiiiine e creneeenereaseesnaessnsessasnsnnsssnsosssssenens 71
V1. Conclusions & ReCOMMENAAtIONS «....cv.vvereeererereeseeesersssssseeeeeenens 73
INtroduction .....ccuciiiiiiiiiiiiiincirircer e esa s ssaees 73
ObSEIVALIONS ..iiuiieniiiiieciniiiertiirreeereerasssreseaersanesrsrsrssnersressersens 73
6014 1¢1 1 D153 (e ) 1 - TR OO 74
Recommendations .........ccoiviiiiiieniiiiiiiniiicienrrneinsseessineesnaesenns 75
Appendix A: Recursive Rejection without Regression BASIC Code....... 76
Appendix B: Dcﬁvative Method BASIC Code......ccovuviuniiniruciennieniinecannes 82
Appendix C: Data Listing for PROGRESS Run in Appendix D ............. 92
Appendix D: Sample Output from PROGRESS Code .........c.oeverrvruenene. 100
Appendix E: Corrolagrams .........ccccoveiiiinnnnnn. veresssenesaesniesenes eereereranees 128
Bibliography ...c.cceeiiiiiiiiii 134
V. ittt crererereeereseren i crane. hetsartessnssasnasaansoseessonnestssranssannennns 136
iv




List of Figures

Figure 1. Plot of Data from Site 897.........ccovovuiriririiiiiiiinnnnneeeicinnnennn. 8
Figure 2. Graphical Display of AFTAC Data........ et 13

| Figure 3. Scatter Plot of Lag of Data vs. Daily Value for Site 897......... 27

~ Figure 4. .Grap'hslof ANscomb's QUATtet..........ccvevererrererverierenns eereesaranes 30
Figure 5. Plot of Regresséd Data with and without Outlier ................. 32
Figure 6. Plot of Outliers in the X and Y Direction ........c..cccocvuvuvcnnnnn. 36
Figure 7. Time Series for Sites 858, 981, and 996.............. rreveeereaeaees 45
Figure 8. Time Series Plot for Site 889 from 91201-91365................... 46
Figure 9. Scatter plot of Site 889 Data.........c..ccoeeviiininvennennnen. ceereranees 47
Figure 10. ACF Plot of Site 889 Data .......cccceeeenveieannnne veveereseansessassanss 51
Figure 11. PACF Plot of Site 889 Data ........ccounn. rereveteratene s eatensnanas 51
Figure 12. ACF Plot of Residuals from Site 889........ovvvvvvrrssessrsres oo 58
Figure 13. R2 Results from AR(1)-RLS.......c.cccceervuivennrnnnnns 63
Figure 14. Scale Factors by Sit€ ......cccccviiueiiuiirniiiiniiiiiiiraciinnneniene 64
Figure 15. Number of Outliers by Method.........cccccceirruirrinniirnveienennees 66
Figure 16. K-value with RRR 2.5 Line........cccoocevuniiirnnirrnninrrunieniiennns 68
Figure 17. K-value with AR(1)-RLS 2.5 Line......cccccceiriviieninncncraccennnes 68
Figure 18. Enlargement of Figure 17 .......cccovvviiiiiivnnninnnnene. e 70
Figure 19. ACF Plot for Site 852 .....ccccceitueiirirnniriiniiinniienneccrsrensioneinnes 129
Figure 20. PACF Plot for Site 852 ........ccccovvieiiinniiiiericicnccrenenccessensseess 129
Fiure 21. ACF PIOt fOr SIt€ 858 .......cueveeeeeereereersessessesssesseessssssesennes 130
Figure 22. PACF Plot for Site 858 ...........ccovviiiininiiininiiniiiiinnienn 130
Figure 23. ACF Plot for Site 889 ......ccoviiiiiimiiiinniiiiininiiiniicienieiennn. 131
Figure 24. PACF Plot for Site 889 ........ccccoeiiiininniininiininiinccnene, 131

v




\ -
'ngure 25. ACF Plot for Site 981 .....cccocvvveeveeerrrereeennes e 132
Figure 26. PACF Plot for Site 981 ........ccovvuerereiruneecnn. rrerreeeeeetaesernnnnns 132
Figure 27. ACF Plot for Site 996 ...........co........ eeeeeeeerenns erruereressanes 133
Figure 28. Correlograms for Site e TS 133




Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.

List of Tables

Sample Data Listing..........ccoeceeeenns vmreennenersnaserseessressrassarennere 14
Results of Outlier Identification Using RRR Method........ ennees 23
Anscomb's QUATTEt ........ieiiiiiiiiiiiiiiiiii e rer e seearaaees 29
Data Results From PROGRESS Run.............cccceee. reeeeererennens .. 4G
P-Values for Regression Coefficients.......ccccoeivrieiiiiiinninanins ....54
Stepwise Regression of Site 889 ..........ccccvvveeveriererrisessnseesanns. 56
Regression Results Using Date as Explanatory Variable ........ 62
vii
/- - T {‘— J\'—" -




ERER

-3

List of Symbols

autocovariance coefficient

null hypothesis
alternate hypothesis

- number of points in the data set

number of predictor variables

residual determined from least squares

correlation coefficient or coefficient of determination
scale estimate

sample standard deviation

constant or intercept of fitted regression

slope of fitted regression |

weight determined from least squares

observed data poiht

vector of observed data points
smoothed data value (3-point running average)

first difference of §,

second difference of

viii




Abstract

This thesis examines the feasibility of using least median of
squares (LMS) procédure applied to a reweighted least squares (RLS)
autoregression model to identify significant outliers in time series data.
The time series were analyzed for data points that were outliers. In order
to perform detailed analysis on an outlier, the analyst must be able to
determine that an outlier data point is significantly different from
normally distﬁbuted data. This thesis examines a new method for
identifying these outliers.

Data from the field were characterized and fit with time series
models using an autoregressive reweighted least squares routine (ARRLS)
derived from the LMS methodology. Various ordérs of autoregression
were applied to the ARRLS method to deteﬁnine an appropriate order for
the model; resulting fit coefficients were tested for significance. |
chression results from data taken =t five sites are presented.

By using an autoregressive order of one (AR(1)) applied to the
ARRLS, this method significantly improved outlier detection in the time
series dafa over the recursive removal without regression (RRR) method

currently in use. In addition to identifying the outliers found by RRR,

. the AR(1)-RLS method routinely identified four times as many outliers as

AFTAC's RRR method. The AR(1)-RLS method is recommended as a
complimentary procedure to the RRR method currently used in
identifying significant outliers. After sufficient operational experience is
gained, AR(1)-RLS may supplant current schemes. Recommendations for

improvements to the AR(1)-RLS method are offered.




IDENTIFICATION OF SIGNIFICANT OUTLIERS IN TIME SERIES DATA

I. Introduction

Research Problem

In recent years, the Air Force Technical Applications Center'
(AFTAC) has sponsored studies to investigate methods to improve its
capability to identify significant outliers in time series data. Outlier
identification plays a central role in many cf AFTAC's efforts. Currently.
the analysts use a recursive removal technique developed by AFTAC to
identify the outliers. Some data analysts at AFTAC suggest by using this
method of outlier identification, certain eventé that may be significant
(but do not meet the strict three-o criteria) often go undetected.
Graphical representation of the time series reinforces this concern.
These graphs show apparent outliers in the data that do not meet the
criteria that identify them as outliers.

A new method preposed by Dr. Lloyd Currie, of the National
Institute of Science and Technology (NIST), tries to solve this problerrt by
using a derivative method that is based on statistical process control
theory. He proposes using a three-sample data smoother and
identification of outliers by use of z-scores. The calculation of tiie z-

scores is based on the first and second differences of smoothed data.




Unfortunately, th~ lerivative method also performs poorly in identifying
some obvious ot. 5. |

These mcthods, as well as others, fail to identify obvious outliers in
the data. A rew, robust method fcr outlier identification is required. The

research presented in this paper attempts to solve this identification

problem.

Res=arch Objective

The objective of the research is to characterize the data, develop a
robust method to detect outliers in the data, and compare the results
with other methods curréntly in use. A robust methcd is relatively
insensitive to the presence of the outliers it is attempting to ideutifv. The
aim of this research is to provide the analyst with an additional

statistical tool to identify significant outliers in time series data.

Scope, Limitations, and Assumptions

This effort is concerned with time series data. This thesis is
limited to the following:

1. Implement an Autoregressive Reweighted Least Squares (AR(1)-
RLS) algorithm for the identification of significant outliers in time
series data.

2. Benchmark the procedure with actual cata sets. Determine the

minimum adequate order of autoregression for these data scries.
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3. Perform a comparison of the derivative algorithm, the AFTAC RRR
method currcntlybuscd in outlicr identification, and the AR(1)-RLS
~method. o
The final product will be a test methodology utilizing AR(I)-RLS. which is
capable of idchtlfymg outliers in time seres data. |
For this thesis, the following assumptions nbply: all data in the
time series are discrete data samples, drawn at uniform sampling
intervals; massaging of the data to account for missing data polnt.é will
not be performed. the method of analysis itself will handle a finite
number of missing data points: the data do not approximate a normal
distribution. but contain long tails of outliers: non-outliers may'hc non-
normal. While the data points will have some measurement errors,
uncertainty estimates will not be used in the analysis. Measurcment

errors are less than one percent and are negligible compared to the time

series variations.

Organizational Overview

Chapt\‘er Two describes the type of data analyzed. The types of
analytical tol)ls avallable for analysis of time series data are also
discussed. Attention is brought to the AFTAC method of data analysis as
well as other proposed methods. Finally, the Reweighted Least Squares

(RLS) technique is introduced and its merits discussed. Chapter Three

| begins with Roussceuw's development of the reweighted least squares

procedure by first discussing the problems encountered with using a
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conventional least mean of squared residuals fit when outliers are
present. This is followéd with the development of the least median of
squared restduals procedure that produces weights that can be applied
to the lcast squares process to produce a robust method for identifying
outliers and fltting data with outliers.

Chapter Four develops the .test methodology that is the basis for
determining the appropriate order of autoregression for the outlier
detection model. In this chapter, the development of the graphical
methods for displaying the data is presented. Problems with the least
squares method and why the development of the reweighted least
squares was necessary are expounded. Following the method
development sections, the available commercial software that implements
the LMS routine is discussed. In Chapter Five, the test methodology of
Chapter Four is applied to the example data sets prOWded by AFTAC and
the results are discussed. Confidence tests and goodness of fit tests are
performed to determine the appropriate order to be used in the model.
AR(1)-RLS, AFTAC RRR method, and dérivative method results are

compared. The conclusions and recommendations of the thesis follow in

Chapter Six. . e




II. Background

A major part of work being performed at AFTAC involves detecting
a significant signéﬂ or event out of a noisy background environment. The
AFTAC analyst needs a preliminary identification that a significant
amount of a radionuclide was released Into the environment. This
significant amount is called an outlier. It is these outliers that interest
the analyst. An outlier is slgmﬁcarit if its value is above a background or
baseline value. A background level is calculated for each series of data
and is therefore series Spéciﬁc. Measure,me.nts of the radionuclide in the
environment are taken on a daily basis. Throughout this thesis, the
recorded valué of the radionuclide is referred to as the K-value. The
objective here is to determine when a particuiar concentration of the
radionuclide or K-value in the environment is significantly elevated above
the calculated background value. |

The current outlier identification procedure involves selecting é
data population centered on a particular data point. Using this
population, an average value is computed. The number of standard
deviations that data point is above the average value is determined, and -
any data point above three-o is rejected. This rejection is performed until
no points exceed three-o. This final average is called the background
valbue. Finally, detailed analysis is performed on any value in the
population that is more than three-c above the calculated background

value. As will be shown, this method is flawed and often fails to identify

some obvious outliers.




——— -

.Introduction

This chapter describes the basics of a time series. The types of
time series, the makeup of our data as it relates to a time series, and
specific notatiorf used in time series analyses are reviewed.

The methcdology'currently in place at AFTAC to identify oﬁtliers in
time series data as well as the problems associated with this approach
are discussed. This is followed by a discussion of other proposed
methods of analySis to ﬁnd significant outliers in the time series data.

Finally, the methodology based on the reweighted least squares
technique and the advantages it offers in detecting significant outliers

are introduced.

Time Series Analysis

Description of the Time Series. I its basic form, a time-series is no
more than a set of Gata {y:t=1,....n} in which the subscript t indicates the
time at which the data y, was observed. Diggle categorized time series
data as follows:

1. The points in time at which the observations are taken are not
equally spaced. The notation for this type of data is {y(t):i=1,...,n}.

2. Each data point represents an accumulation of some quantity over
a specified interval of time, rather than its value at a single point.

Daily rainfall totals fall into this category.




3. | The data set may be augmented by replicate series. Control
‘groups where the same data is taken over a specified period of time
fall into this category.

4, Each scalar quantity y, might be replaced by a vector y, = (y,....y,)
giving thé values of p quantities which are in some way related. An

example of this type might be a daily reading of thé temperature,
blood pressure, and puise rate of a hospital patient. (Diggle
1990:1) |

' The type of time series of interest ..’ this résearch topic is that of
the second category above. Namely, data that are accumulated over the
course of a day and reported as a single measurement. Figure 1isa
graphical example of this data. This figure represents nearly two years of
data from one site and is typical of the type of data to be analyzed.

An important aspect in time series analysis is stationarity of the
data. Most research work in time series arialysis has been concerricd
with the properties of stationary time series. However, if the series is not
stationary, then various techniques can be used to remove obvious
trends from the series. -The most common method to remove trehds from
a series is differencing. Diﬂ‘eréncing is used extensively in the derivative
method discussed later in this thesis. Jenkins went on to separate time
series data into three broad categories based on stationarity:

1. Those which are stationary over relatively long periods of time

because of some form of control over external conditions.
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2. Those series which may be treated as stationary brovided a
. sufficientiy short length of series is examined.
3.  Series which are quite obviously non-stationary, both from their
visual appearance, and also from a pfiori knowledge of the
phenomenon being studied (Jenkins, 1968:151).

' Examination of the type of time series of concern to AFTAC and to

~ be evaluated in this thesis suggests it is of the second category described

by Jenkins. For the majority of the data analysis performed, time
periods of only 30 to 90 days are analyzed. This will allow us to consider

data with some non-stationarity characteristics to be stationary.

Robustness. Hoaglin et al discuss the idea of robustness and the
related notion of resistance. Robustness generally implies the
insensitivity of a regression procedure to wild outliers (Hoaglin and
others 1283: 2) Robustness is a necessary quality in any method

designed to identify outliers.
Martin and Yohai discussed the concept of robustness and its

importance in performing time series analysis. They stated that a robust

- procedure should be applied in the time series setting. ’Ihe_y‘regarded

qualitative robustness as paramount. By their definition, an estimate is
robust when it changes by only a small amount when the sample is
changed by replacing a small fraction of observations by arbitrarily large
outliers (Martin and Yohai 1985: 120-126).

Bredkdown Point. In addition to the idea of robustness described
above, aﬁother important concept is that of the breakdown point. F.R.

Hample introduced the idea of breakdown in 1971. In its basic form, the

e e <




idea of thé breakdown point of a regression estimator is the iargest
fraction of data that can be moved to infinity without taking the value of
the estimate to infinity. The sample mean has a breakdoWn point of
zero, implying that moving a single data point to infinity will drive the
mean to infinity. Howevér, the sample median is highly resiétant with a
* breakdown point of approximately ' for finite sample sizes and tends to
exactly % as the sample size tends to infinity. The breakdown point is a -
global measure of performance of an estimator (Martin and Yohai
1985:150-151). It is a quantitative méasure of the qualitative property
called "robustness”. |
Hoaglin et al further defined the breakdown point of a proced‘uré
for fitting a line to n pairs of y-versus-x data as k/n, where k is the
greatest number of data points that can be replaced by arbitrary values
while always leaving the slope and intercept bounded. A breakdown
- bound of ¥ is the best one can anticipate. Beyond this bound, no
distinction can be made between fitting the good data points and fitting
outliers (Hoaglin and others, 1983: 159) |

Recursive Rejection w/o Regression Method of Analysis
Discussion. The data analysts at AFTAC use a method of analysis |
provided in an in-house-developed software package called RPP. The

AFTAC method is hereafter referred to as the Recursive Removal without

Regression (RRR) method. This package provides the analyst with two

10




major methods to view the data, either graphically or in a series of table
listings. o

RRR Algorithm. The RRR algorithm employed by AFTAC is simple
in nature but lacks robustness. The RRR is a recursive routine. The
basic algorithm uses a window of data points around a specific day that
makes up the sample population. AFTAC uses a window of 30 days

based upon statistical minimum populaﬁon sizes for normally

distributed data (Tinsley, 1992).
Simply put. the routine computes filtered statistics (mean, standard
deviation, minimum and maximum) on the input data array. The first
step is to calculafe the number of the non-zero data points in the
population. Since AFTAC specifies a population size of 30, the data set
consists of the data points 14 days prior to and 15 days after the day of
interest. The data pdints with zero values are first eliminated and the
mean of the remaining non-zero values is then calculated.

1S

Yi=— y," - (1)

n &,

The sum and the sum of the squares of the non-zero points are then

calculated.

Voum = Zyj (2)

=Yy 3

11




Once the sum and sum of the squares are calculated for the data set, the

standard deviation can then be computed.

y
Voum =)
o=|—o1— ' (4)
n-1
With o computed, the number of standard deviations each data point in
the population is above the mean (or background value) is then

calculated. If any point is three or more standard deviations away from

 the background value, ysym and ysymsqr are decremented by the value

and square of that value respectively. Additionally, the number of points
remaining, n, is decremented. After all the data points have been
screened and those greater than three-o removed, the o is recalculated
and each of the rernaimng points is again subjected to the three-o test.
This is repeated until no additional points are removed from the data set
or until the number of points remaining in the data set fall below 15.

When the cycle is complete, the mean of the remaining values now
represents the background value for that day. This background value is
then subtracted from the measured value for that day and the number of
standard deviation units is calculated. If the resulting number of
standard deviation units is greater than 3.0, the point is considered an
outlier and flagged. If more than half the values are missing or excessive
(i.e., n < 15), no statistics are calculated and no information is available
for that data point. |

The RRR method is the foundation of significant outlier
identification at AFTAC today. However, it is not without its problems.

12




Most notable is the failure of this method to identify as significant those

points in a time series which, when displayed graphically in a time series
' plﬁt, are obvious outliers. The events at days 91313 and 91328 shown in
—- Figure 2 illustrate this point. This "minor" problem motivates the |
research being performed here. Figure 2 and Table 1 illustrate the

graphical and tabular fcrm of data display produced by the RRR

algorlthm.
-] | |
o |
o [ " |
/{ é 50D - r Sﬁlcn;:tlm
- |
=l |

Dae

[:l Kl RRR ansumm-J

Figure 2. Graphical Display of AFTAC Data

The graphical display shown in Figure 2 gives the analyst a quick
look at the site data. Any time the K-value line exceeds the three-o line,
the event is recorded as an outlier. This same information is provided in

the listing in Table 1. The listing in Table 1 provides the analyst with a

13




quick look at the station data results. The foilowing information is given

in the listing:
DATE VALUE BKGND c DRP
91083 6206.2 1949.4 +12.5 5.
91084 5090.6 1965.2 + 9.2 6
91085 9718.9 1965.2 +23.0 6
91086 2608.4 2648.0 0.0 2
91087 1848.5 2740.9 0.6 2
91088 2014.4 2777.2 0.5 2
91089 2423.5 2781.2 0.2 2
91090 2416.1 2730.1 0.2 3
91091 1912.3 2735.4 0.5 3
91092 2328.3 2732.3 0.3 3
51093 1891.9 2730.4 0.5 3
91094 2482.4 2843.4 0.2 3
91095 1961.8 2904.7 0.6 3
81096 1653.4 2891.8 0.8 3
91097 2250.3 2864.8 0.4 3
91098 1860.4 2693.3 0.6 3
91099 6518.5 2564.0 2.9 3
91100 40295.0 2529.3 +28.1 2
91101 6518.4 2505.8 3.0 2
91102 4164.4 2528.0 1,2 2
91103 2570.1 2516.0 0.0 2
91104 1988.5 2486.4 0.4 2

Table 1. Sample Data Listing

DATE Julian date for the obsérvation/sample.

- VALUE Actual value in arbitrary units for the observation/sample. (K-
value in this thesis)

BKGND The calculated background level based on the Sﬁfrounding 30
days. A

c The absolute value of the number of standard deviations a value
is above the background. Values greater than 3.0 are flagged
with a '+, '

14




DRP The number of data points dmppcd from the original 30 day
calculation. |

One major problem with this "quick look" is the ease with which

significant data can be overlooked. Additionally, if the analyst miJst

examine large amounts of data, it becomes increasingly easy to overlook

an outlier.

Previously Proposed Methods of Analysis

~ Inthe paSt. a number of methods have been proposed to AFTAC in
an attempt to better improve the detection of significant outliers in the
analysis of time series data, but none have been adopted. For

completeness, a brief discussion of four of these methods is included.

- The Derivative Method. Dr. Lloyd A. Currie, of the National
Institute of Science and Technolog'. proposed a procedure that
demonstrates the derivative method of outlier detection in a background -
time series. The algorithm is based on five operations, applied to the
original data sét: 1) interpolation of missing days not to exceed three
days, 2) application of a three-day moving average, 3} taking of first
differences, 4) taking of second differences (repeating operation-3 on its
output), and 5) applying a control process routine to spot out-of-control

points (possible outliers), using "local” rather than "global’' standard

deviation.
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Dr. Currie explained that the control limits for this procedure are
set to * 5 standard deviations for sound stafis_tica] reasons. In effect, the
probability (1-sided) of exceeding these limits by chance, once, in a 365
day set, is approximately 10%6 for the first differences and 5% for the
second differences, when there is random normal error only (null case).
Therefore, any excursion: you see in the plot of the second differences
should be scrutinized as a possible outlier. Significant excursions in the
second difference must be negative (negativé, Cuwéture for a positive
outlier), and must be beyond the control limit of -5.0 ("z-score”) (Currie
1992). | .

Dr. Currie provided the following as the pseudo-code for the
derivative method for outlier detection. Appendix B contains the
algorithm coded in BASIC. '

Step-1: Isolate the time series data vector, length-n, to be studied.
If it has missing value sequences exceeding length three, break it into
sub sequences which do not. Given the time series, y; 1<i<n, the

smoothed series , is

kvl u’-+‘i+i+
y:(y, Y.+ Yim)

; 3 , for2<ign-1 (5

Step-2: Create a first difference vector, by operating on the

smoothed series 3. The first difference, 4y, is

Ay, =3,,-5, for2<i<n-4. (6)
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Step-3: Repeat step-2, this time operating on the first difference

vector, resulting in a second difference vector. The second difference,

A’y Is

-~

A'y, = Ay,, - Ay, for2<isn-1. (7)

Step-4: Pérform an ordinary control chart operation on the
individual elements 6( first and second difference series, where the
"group size” is unity. Compute the mean value for each series as the
sum of the ele:ncnts_dlvided by n-5 or n-8, as appropriate (Dr. Currie
uScd n-3 and n-8 respectively, but this is incorrect). Idecally, the
expected values of these means would be zero. The mean of the first aﬁd

second difference series, Ay, and K’-i are

—d
. A3, | ,
Ay == 8
y, == (6)
-’
. A'y,
R - (9)
n-8 .

Next, estimate the "within" or "local” standard deviation ("process- \
o"), using the simplest approach, the range technique. Compute the
sequence of ranges as the differences between each pair of elements The

range of the first differences, R,. is

R' = Ay, -4y, for2<isn-4 (10)

The range of the sccond differences, R, is
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R} =A'y,, -A', for2sisn-7 (11)

Next, compute the average absolute range, as the sum of the

absolute values of the differences (ranges) divided by the range vector

length.
(12)

and

The statistical factor 'd,’ (1.128) converts the mean ranges (for
observation pairs) to estimated standard deviations. This gives an

estimated o for each range of differences, o) and o9 as

R,
=l 14
%1=1128 (_ )

and

0, =0 (15)

7128

This mean rahgc divided by 1.128 gives an estimate of the "process ¢."

(Ryan, 1989: 84-85, 343).
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. Step-5: Finally, compute the vector of "z-scores" for the first and

second differences. The z-score, z;, is

z,.'=ﬂ, for2<isn-5 . (16)
o, » | :
and
Ay, |
22=—2L for2<isn-8. 17

. For reasons discussed above, Dr. Currie sets the control limits for

z at 1 5 for the first difference and at - 5 for the second differehce. Dr.
Currie went dn to explain that this procedure is specifically designed to
look for outliers that occur as the result of a ‘local incursion’ and is not
valid for 'long range events' which cannot be accurately predicted by the
" model. (Currie, 1991:1-2). |

~ The STL Procedure. STL is a filtering procedure for decomposing a
seasonal time series into seasonal, trend, and remainder components.
STL has a simple design that consists of a sequence of appiications of the
LOESS smoother’. The simplicity allows analysis of the properties of the
procedure and allows fast computation, even for very lohg time series
and large amounts of seasonal and trend smoothing. Other features
include: the specification of amounts of seasonal and trend smoothing
 which range from very small to very large; robust estimates of the
seasonal and trend components that are not distorted by aberrant

behavior in the data; specification of the period of the seasonal
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component as any integer mﬁltiple of the time sampling interval greater
than one. (ENSCO: 1-2) |

The LOESS Procedure. LOESS is a nonparametric regression using
multivariate smoothing by moving least squares to fit data. Loess
estimates regression surfaces by multivariate smoothing: fitting a locally
linear or quadratic fuhction of the independent variables in a moving
fashion. This is analogous to how a moving average is computed for a
time series. Compared to classical approaches -- fitting global
parametric functions -- LOESS substantially increases the domain of
surfaces that can be estimated without distertion. Also, a useful féature
of LOESS is f!that analogs of the statistical procedures used in parametric
function ﬁtt{ng -- for example, ANOVA and t intervals -- involve statistics
whose distributions are well approximated by familiar distributions
(ENSCO: l-é). |

The LOWESS Procedure. The LOWESS program contains the
routines for jthe classical LOESS algorithm. It smoothes only as a locally
linear functi]bn of one independent variable, computes the LOESS curve
only at the v;alues of the independent variable in the data set, and
computes no statistics. According to ENSCO, you can readily use
LOWESS for smoothing scatter plots, since it is simple and fast.
Smoothing can be carried out for more than one independent variable,
the LOESS surface can be combuted at any collection of values in the
space of the independent variables, and statistics for confidence intervals
and ANOVA can be computed. (ENSCO: 2)

STL, LOWESS, and LOESS were not adapted by AFTAC, mainly

due to the complexity in their implementation and the manipulation of
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the data nécessary to get it into a form usable by the procedure. - In
particular, LOWESS and LOESS required the analyst to make subjective
inputs into the model. The derivative method is occasionally béing used
in limited cases, but has not yet been formally accepted. Again. the
limxtations of the procedure, the problems associated with missing data.

and the requirement for 'local incursion’' make its wxdespread use

unlikely (Tinsley, 1992).

Limitations

In each of the previous sections that deal with either methods in

use or proposed methods, limitations with these methods have been

‘identified. These limitations range from difficulty of use and

implementation (with the LOWESS, LOESS, and STL methods) to

| manipulation of the data (with the derivative method). The most

disquieting problem exists with the RRR method. In many obvious cases
of outliers in the data set, the method fails to identify these outliers. The
ability of the RRR method to identify probable outliers in a data set
appears to hinge not only'on the magnitude of the outlier, but also on the
size of the population the data is drawn from.

This is illustrated in the following example with is the basis for the
RRR algorithm. Consider a data set where the value of all points is zero

except for one

X =0 Vi(l...N)exceptone,x,. (18)
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The average of the set is

_ 1 1 X,
TN LA TN 19
and the sum squared is
= 1 1 x}
2o 2ol g2 l0 20
FEgLX e =Y (20)

The sample standard deviation, s, which approximates o, is given Yy

. s(=0)= . . ‘ ' (21)

Finally, it can ndw be shown that the number of standard deviations a
particular point is above the mean is a function of the number of points

in the population, N, and not the magnitude of the point. This is given
by

(22)
m

The results of several population sizes are tabulated in Table 2.




| Table 2
ReSults of Outlier Identification Using RRR Method

N X o  #ofc  outlier
. Identified?
5 0.200 0.447 1789 . no
0.143 0378  2.268 no
9 0.111 0.333 2.667 no
15 0.667 0.258 3.615  yes

30 0.033 0.183  5.295 yes

The information given in Table 2 is:

N

X
o
#

ofo

sample population size,
arithmetic mean of the population,
sample standard deviation,

number of standard deviations above the mean the suspected

outliér is,

-outlier identification as an outlier. .

As Table 2 illustrates, determining whether the data point is

identified as an outlier is strictly dependent on the population size. In

each case, the data point was an obvious outlier, but the population size

was the determining factor in its identification. This is a major flaw in

this method.
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As a result of the problems discussed for the various methods, it is
necessary to devélop a methodology for identifying outliers which is not
influenced by the population size or the occurrence of the outliers in the
data set. To remedy these problems, a robust method with a high
breakdown point is required. This method should not depend upon the
population size, nor should it be influenced by the presence of the
outliers it is attempting to identify. In the next chapter, the
AutoRegressive Reweighted Least Squares (AR(l)-RLSi method is
developed. The application of the methodology shows great promise in

correcting shortcomings in the previously discussed methods.

Summary

'I‘h_is chapter discussed the basics of a time series and how the
data that AFTAC analyzes falls into the two general categories of time
series--each point represents an accumulation of some quantity over a
specified interval of time and that series of sufficiently short length can
be treated as stationary; The RRR method currently in place at AFTAC
as well as a number of other proposed methods for analyzing the data
was discussed. Finally, the need for a mc\>re robust method for detecting
outliers was identified. In the next chaptér. the AR(1)-RLS methodology
is developed and followed with the application of the method to detecting

outliers in the time series data.
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IIl. Theoretical Development

Introduction

In his book The Analysis of Time Series, Chatfield writes about
graphical displays of time series data:

The first step in anélyzing a time series is to plot the observations
against time. This will show up important features such as trend,
seasonality, discontinuities and outliers (Chatfield, 1984:14).

Not only is much explanatory information gleaned from the initial
look at the graphical display of data, but it also enables the analyst to

“see the behavior of the data, to see unexpected features as well as the

familiar regularities. The emphasis on the visual display of dat.a provides
a major contribution to exploratory data analysis (Hoaglin, 1983:3-4).
AFTAC is searching for additional tools to provide the analyst an
improved capability to identify significant outliers in time series data.
This chapter will begin with the development of techniques and methods
for dealing with time series data, including initial identification of outliers
by graphical displays. If possible, the analyst would like to examine all
data graphically, but AFTAC does not have the resources to do so. Thus,
what is needed is a method of reliably flagging outliers so the analyst can
later examine the data graphically and decide on further analysis to be

performed. The graphical method then is followed by a discussion of

- robust estimators, and the need for a high breakdown method.

Robustness and the breakdown point are important because an efficient
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method of outlier detection requires that the method itself not be
influenced by the presence of the outliers. The drawbacks of using the
least squéres method are presented with graphical examples. Finally,
Rousseeuw's least median of squared residuals method and how it is
used to perform the reweighted least squares routine is developed. This

chapter ends with a brief discussion of available codes that contain the

RLS algorithm.

Procedure Development

Graphical Display. In the book Understanding Robust and
Exploratory Data Analysis, Hoaglin, Mosteller, and Tukey discuss the
four themes of explbratory data analysis. Thesc are resistance,
residuals, re-expression, and revelation (Hoaglin and others, 1983:2). It
is this revelation through the graphical display of the data that the
analyst is looking for and which should be the basis for any further
analysis. Much work and computational effort can be saved by the
prudent use of various graphical displays of the data to initially identify
suspicious trends in the data. Chatfield goes on to say, "Anyone who
tries to analyze a time series, without plotting it first, is asking for
trouble. Not only will a graph show up trend and seasonal variation, but
it also enables one to look for 'wild' observations or outliers which do not

appear to be consistent with the rest of the data” (Chatfield 1985:7).
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Figure 3. Scatter Plot of Lag of Data ve. Daily Value for Site 897

So important is the graphical display of the data in identifying

significant outliers and discovering trends, that two previously discussed

methods that are graphically based, LOESS and LOWESS, were

suggested as complimentary methods for the analysis of AFTAC's data.

. By plotting the data, significant trends in the data are discovered. An

example would be the scatter plot of the data from one of the sites shown
in Figure 3. This is a scatter diagram for lag k = 1, obtained by plotting
yt versus y¢.1. The plot shows that neighboring values of the time series

are correlated, with the correlation between yt and y;. ] being positive.

The use of a scatter plot often allows the anal; st to better visualize the
data structure and identify outliers in either the x or y direction
(Rousseeuw, 1987:3). Other plots such as time series plots provide
valuable ihformation. Using a time series plot. suspected outliers as well

trends in the data can be identified.
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Further, index plots, where the standardized residual plotted
versus the index of the observation, and residual plots.vwhere
standardized residuals are plotted versus the estimated value of the
response, are tools for spotting outlying observations. Examples of
residual plots are shown in Appendix D in the output from the
PROGRESS code. Analysts would use thése plots after application of a
regression (or autoregression) fit to the data. In addition to the
identification of outliers, residual plots can provide a diagnostic tool to
gauge the goodness of fit of the model being applied (Rousseeuw,
1987:55-56).

Edward Tufte, in his book The Visual Display of Quantitative
Information, gives a revealing example of how important it is to
graphically display the data. Listed in Tasle 3 are the data Tufte

describes as Anscombe's quartet. All four of the data sets are described

by exactly the same linear model, and have identical goodness-of-fit

statistics.
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Table 3
Anscomb's Quartet (Anscombe, 1973:18)"

I B m v

X Y X Y X Y X Y
10 - 8.04 10 9.14 10 746 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 758 - 13 8.74 13 12.74 8 7.71
9 8.81 9 - 8.77 9 7.11 8 8.84

.11 8.33 11 9.26 11 7.81 8 8.47
14  9.96 14 - 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5
12 '10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8

6.89

* The stutistics for these data sets are identical. The mean of the X's
is 9.0 and the mean of the Y's is 7.5. The equation of the line for all four

sets is ¥ =3+0.5X and the standard error of the estimate of the slope is

0.118. The total sum of squares Z:(x-i)2 =110.0, t=4.24, the regression

sum of squares = 27.50, the residual sum of squares of Y = 13.75, ihe
correlation coefficient = 0.82, and R2 = 0.67. It is not until you examine
a graphical display of the data aé given in Figure 4 that it becomes vividly
clear how different the data are (Tufte, 1983: 13-14). It is for exactly this
reason that the first step in the analysis »of any set of data is to
graphically display it. Data analysis cannot be performed by simply

looking at the statistics alone.
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Figure 4. Graphs of Anscomb's Quartet (Anscombe, 1973:19)

Problems with the Least Squares (LS) Regression

Various methods have been developed for fitting a straight line in

the form

Y; =60, +0,x; +¢, (23)

to the data in the form of (x;, yj. i=1....,n. Here 6,&6, are unknown

coefficients to be estimated and g, are independent, identically

distributed (iid) normally distributed errors. Least Squares (LS}
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regression operates by minimizing the sum of the squared residuals. It
should be noted that minimizing the sum of the squared residuals also
ninimizes the mean square residual. Thus, LS Is really least mean of .

squared residual regression. This is given as

where

rn=3,-)y, | - (29)
and

5, =0, +0,x,. | - (26)

The _rcasbns for its popularity include ease of calculation, a rather simple
mathematical dcrlvauon. and that it is built on the Gaussian
distribution. Unfortunatély. the least squares regression offeis no
resistance to outliers. In other words, it is not robust. A single wild data
point can easily influence the fitted line and cause an erroneous

summary of the data. Figure 5 illustrates this point.
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Figure 5. (a} Original data with five points and their least squares
regression line. (b) Same data as in pait (a), but with one outlier in the
y-direction. (Rousseeuw, 1987: 4)

Figure 5(a) illustrates a simple set of data with an LS line fit. If one
data point is bad, as in (b), the LS fit no lcnger represents the data. The
LS procedure tries to fit the outlier, even though it is no longer a valid
part of the data set. For this reason, a more robust method of fitting the

data without being influenced by outliers was necessary.
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The Least Median of Squared Residuals (LMS) Algorithm

In the previous section, the classical method of performing a linear
regression, the least squares regression, was discussed. Many have tried
to improve upon the robustness of the classical regression by replacing
*1e square with some other quantity. One of the first attempts was made
by Edgeworth in 1887. It consisted of taking the least absolute value of

the residuals and minimizing this sum. This is given as

—-é-oT‘-; inl | (27)
Tﬁis technique is often referred to as the L) regression, where least
squarcs-is the Lo regression (Rousseeuw and Leroy 1987: 10). While
more robust_than LS, it was found that the mean was not as robust as
the median. ‘

Rousseeuw developed a different approach in which the sum

.(mean) is replaced by the median of the squared residuals. In light of the
median being very robust, this method proved extremely successful. |

This new robust estimator can handle up to 50% of the data being

- contaminated (Rousseeuw 1984: 871-872). This least median of squared

residuals (LMS) regression, was introduced by Rousseeuw in 1984 and is

given by

minimize .. 2
) median r”. (28)
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Rousseeuw said of LMS:

The computation of the least median of squares regression (LMS)
coefficients is not obvious at all. It is probably impoessible to write
down a straightforward formula for the LMS estimator. In fact, it
appears that this computational complexity is inherent to all (known)
affine equivariant high-breakdown regression estimators, because
they are related to projection pursuit methods (Rousseeuw and Leroy
1987:197).

Rousseeuw givés a brief discussion of the Projection Pursuit (PP)
prbcedures vin his book Robust Regression and Outlier Detection.
Rousseeuw relates this procedure to discovering the structure in a
multivariate data»set by projecting these data in a lower-dimensional
space and to robust regression (Rousseeuw 1987:143-145). ]

LMS is however, a highly robust method for fitting a linear

regression model. For this regression, consider a true model in the form

Y, =0, +0x, +¢, i=1..,n, (29)

|

or, for multiple variables, - |
’ |

=6, +):ex +e, i=l..,n, (30)

where there are P explanatory variables, 8's, and the number of degrees

of freedom used in fitting.. In the case presented hére. there are p

independent or predictor variables. For an arbitrary value 6,, let

rr=y,-0,+6x) i=1..n (31)
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be the residuals, based on the responses y, and the observed exp_lanat,oiy
vectors x,. In the case of the time series we are examining here, xisa
single vector. For the autoregressive model, x; is the K-Value at time ¢;
and y; is the predicted K-Value at time tj4+j. The LMS estimate 6

minimizes the median of the squared residuals

med(r?(8)) = med(y, - x,". @2

In contrast to the LMS method, the normal least squares estimate

6,, minimizes the mean of the squared residuals

ave{r..*(en=-,‘;i;rf(e>. (33)

The previous section explained why the least squares estimate
lacks robustriess. It was shown how a single data point consisting of the
response ¥, and the éorfes"]jdndirﬁé Ekbiéhatbry variable ki (':anﬂcauﬁsve”é;,w W
to take on any value in p-dimensional space. This is not the case with
the LMS method. LMS still provides good statistical performance despite

having nearly 50 percent of the data as outliers.

Figure 5 in the previous section illustrated the lack of robustness. |
Now let's look at the effect of LMS operating on the data. Rousseeuw o

gives two examples of the magnitude of the probiem caused by a single
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outlier on 8,; and how a robust method such as LMS can correct this

and properly fit the line and identify the outlier. Consider two data sets;

N\ the first with a single outlier in the y-direction, and the second with a
single outlier in the x-direction. These are in Figure 6(a) and 6(b).
|
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Figure 6. (a) Outlier in the y-direction and (b) Outlier in the x-direction
(Rousseeuw, 1987: 4-5).

Figure 6(a) illustrates the best LS fit of a scatter plot of five points
that form a somewhat straight line. However, due to a problem, either

statistical, copying error, or some other effect, the value of y, is incorrect
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and the point (x,, y,) is now far away from the ideal line. As is shown,
the LS fit for the data is strongly influenced by this outlier. This point is
called an outlier in the y-direction. '

Another example is an outlier in the x-direction as shown in Figure

6(b). This outlier is called a leverage point. This is an analogy to the

idea of leverage in mechanics. Since x, is far from the line, the residual

from the LS fit becomes large, and contributes greatly to Z‘:_lr,.’ for the fit

to that line. The effect is that the LS line is now tilted toward this
leverage point in an effort to reduce this large residual, even though it
makes the other four smaller residuals a} bit larger. The effect is
dramatié (Rousseeuw 1987:5-7). This research will analyze data with
outliers in both x an y-directions.

As Figures 6(a) and 6(b) show, LMS is robust, i.e. resistant to these
outliers. This is not true with the normal least sqﬁares regression, which
is strongly affected by the presence of outliers. This is the basis for using
a robust regression technique such as LMS to identify outliers in data. -

The key feature of the LMS is the robustness that the high
breakdown point gives. The breakdown point is approximately 1/2 (and
indeed tends to 1/2 as the sample size becomes arbitrarily large). Recall
that the breakdown point of a regression estimate is the largést fraction

of data that may be replaced by arbitrarily large values without making

the estimate tend to infinity.




Weighting and Least Squares

In order to improve the efficiency of the LS method, weighting is
introduced. One of the results of the LMS is a scale estimate. The scale
estimate is an estimate of the variation of the data, and is similar to-the
standard deviation. For the LMS, the scale estimate is defined in a
robust way. Here it is calculated based on the value of the objective
function multiplied by a sample correction factor that is dependent on n

and p. Rousseecuw calculates the primary scale estimate using

Equation 34.

5 v
° 21,4826 1+ —— | [med 1 34
s ( n-p) m'_edr; (34)

With this scale estimate, the standardized residuals r;/s? can be
computed. The weight can now be calculated for each observation by

Equation 35.

v, = {1 if|r. /5| s 2.5 (35)

0 otherwise

The adjusted scale estimate for the LMS is now calculated using
the weights computed in Equation 36. This adjusted scale estimate,
associated with Equation 35, is simply the conventional LS scale

estimate when the weights are all put to one.
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(36)

Of particular importance here is that ¢* also possesses the same 50%
breakdown point that the LMS method exhibited (Rousseau, 1987:
44,46). ‘This scale estimate is used in the test methodology chapter to

help determine the gOodhess of fit of the coefficients while the weights

are used to improve the least squares fit.

Réweighted Least Squares |
|
Using the wexghts determined by the LMS a reweighted least
squares solution for the data can be found. T{'le effect of using the
weights, which can only take on a value of 1 or 0, is the same as deleting
all fhe data points for which. w; equals zero (al’so referred to as trimmed
least squares by some authors). The result would be the ordinary least

squares solution if you put w; equal to one for all cases. The effect of

using th= weights is to operate on a reduced data set which does not
contain outliers. As a result, the statistics are more trustworthy than
those associated with the least squares performed on the entire data set
(Rousseeuw, 1987: 43-44,132). In the application of this method to the
AFTAC data;, the remaining data are essentially all background points.
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Therefore, the regression, and it's standard deviation. describe only those
background points and not the outliers. |

To illustrate the improvement in statistical results, Table 4 lists the
results from the data used in the PROGRESS run in Appendix D. All of
the standard ANOVA results improved, often dramatically, when stepping
from the standard LS procedure to the LMS procedure, and finc.ly ending
with the AR(1)-RLS procedure. Of importance is the improvexhent in the
o and R2 results for the data listed in Table 4.

Table 4
Data Results From PROGRESS Run

o] R2
LS 468.58 0.38
LMS 29.29 0.69

RLS | 27.74 0.73

The results in Table 4 demonstrate .1ow much the reweighted least
squares, based on the weights determined from the least median of
squared residuals, improved the overall statistics. The improvement in ¢
. which is a measure of the variability of fitted values around the mean is
dramatic. Additionally, the R2 values improved significantly. The higher
the R2, the better the data fit the regression equation.
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Auvailable Codes

To test the premise that the LMS and RLS methods could
satisfactorily operate on the data sets provided by AFTAC, a version of
the LMS method was implemgnted using Mathematica. With this code, it
was confirmed that LMS and RLS could identify outliers in the data. The
problem with the Mathematica vérsion was that it was extremely slow

due to the overhead of the powerful but interpreted language, as well as

‘the computational complexity of the method. For this reason, a search

for commercially available software that incorporated the LMS or RLS

method was conducted.

Rousseeuw stated in his preface that the code had bleen integrated
into the workstation package S-PLUS from Statistical Sciences, Inc. 1
contacted Statistical Sciences and was able to obtain a demd copy of
their recent S-PLUS for DOS release. I was able to perform calculations
with this product, but found it tob cumbersome, méinly because it does
not function in the Microsoft Windows environment.

Rousseeuw also stated in his preface that his Program for RObust
reGRESSion (PROGRESS) could be obtained directly from him. After
exchanging correspondence with Dr. Rousseeuw, he provided a copy of
the PROGRESS code (Rousseeuw, 1992). Using the PROGRESS code,
the methods developed in the next chapter are tested.
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Summary

This chapter looked at the development of the method to be used
in detecting outliers. As discussed by many authors, the first step in
analyzing any set of data is to display the data graphically.

Development of the RLS process was discussed. By looking at the
weaknesses of the original least squares method, and developing the
least median of squared residuais method, significant improvement in
the detection of outliers was demonstrated. Also discussed was the
robustness of the LMS method with respect to outliers in the data set.
Additionally, the cépability of the high breal.down point to improve the
method's capability to withstand up to 50% of the data being
contaminated was discussed. Finally, thé RLS method was introduced.
This robust, high breakdown method was identified as the method of
choice for model development.

The chapter ended with a discussion of available codes that
incorporate the LMS/RLS methodology for production use. In the next
chapter, the methodology to develop a procedure for identifying outliers

in a time series is discussed.
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IV. Test Methodology

Introduction

In this chapter, the test methodology used to determine the most
appropriate order of autoregression to usé with the reweighted least
median squares procedure is developed. Actual data from the lést 165
days of 1991 from site 889 is used in this development. I choose this
data set because of obvious significant events that are present in the
time series plot. In the next chapter, this methodology will then be
applied to all data sets. .

'i‘he tests and methods used in this section are based on
developing models for forecasting. Many of the tests for determining
order are derived directly from those used to develop Aixtoregressive
Integrated Moving Average (ARIMA) models as described by Box and
Jenkins (Box and Jenkins, 1976:18). The test methodology presented
here departs from the application of the Box and Jenkins results used in
normal forecasting. This method is not trying to predict -vhat the
K-value will be on any particular day, but whether that K-value is
statistically different from other days around it.

The first step is graphically displaying the data using some
' common methods employed in time series analysis. Initial
-characterizations about the data are inferred from the graphical d:splays.

Following this, correlograms -- the autocorrelation and partial |
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autocorrelation functions -- for the data are calculated and plotted. This
will give an initial indication of the order of autoregression (AR)
appropriate to the data. These orders of autoregression are applied to
the data and used as input to the RLS proéedure in PROGRESS. _

" In addition to the PROGRESS runs on the data, stepwise multiple
autoregression will be performed; The results from the PROGRESS runs
and the stepwise multiple regression will then be used to selgct the
appropriate AR order. This final choice of AR order will then be applied

to the data set and outlier statistics calculated.

Test Data

The previous chapter demonstrated the benefits of using a
reweighted least median of squares method for fitting a line to the data.
This same method can be used for detecting outliers in time series data.
The final test of effectiveness of a method is a measure of its performance
with actual data. In particular, any new method must be capable of
performing as a complimentary process or functioning as a replacement
procedure to the existing method.

The data to be analyzed here conéist of two years of raw data from
six geographically different sites. This data represents sets which range

from a stable background with little fluctuation in the data, to extremely

noisy data with a large fluctuation in the background. Figure 7 is a time

series plot of the data from three sites that are stable, moderately noisy,

and extremely noisy.
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Figure 7. Time Secries Plot for Sites 858, 981, and 996

Figure 7 readily illustrates the wide variety of data that is collected and
must be analyzed. An effective model dcvciopcd should be able to span
the range of data types illustrated here.

The data used in the development of the methodology were taken
fmm the last 165 days of 1991 for site 889. Thls'da.ta set is listed in
Appcn(_i'lx E. This data set was chosen because of what appears to be a
smooth time series data stfcnm with possible outliers in the data. These
outliers appear ncar the end of the period of interest. The first step is to »
graph the data to see whether any significant deviations appear.

Time Serles Plots. The time serics plot of the data is given in Figurc
8. Missing data are indicated on the plot. This plot shows a time series
that Is relatively flat and stationary with the exception of a few data

points that appear to be significant outliers during the period 91313 to




91327. Because the magnitude of the data does not increase or decrease
relative to time, a regression technique using time as the explanatory
variable and K-Value as the response is not a useful choice. This

assertion will be justified later in the analysis.
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Figure 8. Time Series Plot for Site 889 from 91201-91365

Scatter Plots. Since the model is expected to be a autoregression
model, a second way of observing the data is in a scatter plot. This is
simply a plot of the of the specified lag value versus the value of a
particular day (y;.y;.7). In a simple regression model, it is easy to
visualize the data structure using a scatter plot. In a general multiple
regression model with large number of explanatory variables, this would

not be posstble. Figure 9 is a scatter plot of the data.




Figure 9. Scatter plot of Site 889 Data.

The general appearance of the scatter plot shows a tight group of
points with a slope of approximately one. The two lines drawn give a
rough estimation of the trend of the data. Points located above or below
the lines should be flagged as probable outliers. Again. since the points
appéar to fall on a somewhat straight line, the scatter plot indicateé that
an AR(]) regression model is appropriate. Since time cannot be used as

ane explanatory ch'iablc. the only other choice is some order of

autoregression.
The origin of the term autoregressive is taken from the fact that the

equation we use to describe an autoregressive model is exactly like a
normal regression equation. The difference is, where x¢ plays the role of
the explanatory variable and y¢ the response variable in a regression

model, now y;.]. yt.g.ctc. are the explanatory variables. Since the
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variables y;. 1.y¢.g.etc. are the same data as y¢ (just offset by one period,
two periods, etc.), y; is actually being regressed on itself---hence the term

autoregressive (Hoff, 1983:50)

Autoregressive Order Identification

The identification stage in determining the order of regression is
the longest and most difficult. Fortunately, computers can rapidly
pi'oduce results based on the methods chosen, but often the

identification requires subjective judgment. Once the order of regression

s identiﬁed. there is relative éertajnty that the model will be able to

accurately fit the data. If the model can fit the data set, it can identify
outliers in the data set. |

Identification means using the data and any information on how
the series was generated to pick a proces‘s to begin model generation (Box
and Jenkins, 1976:171). A typical key to identification of an AR process
lies within the patterns found in the Autocorrelation Function (ACF) and
the Partial Autocorrelation Function (PACF) (McCleary, 1980:93). The
plots of the ACF and PACF functions are commonly referred to as
correlograms. Additionally, ANOVA statistics, along with F-tests and t-
tests of the coefficients, sample standard deviations, and coefficients of
determination (R2), will aid considerably in the choice of the proper order
of autoregression. In particular, the overall F-test will be used to
determine whether or not all of the independent variables taken together

significantly contribute to the prediction of the dependent variable. The
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t-test is used to assess whether or not'the'._ addition of any specific
independent variable to the model significantly improves the prediction of
78 givén that other variables already exist in the model.

ACF and PACF Plots. Graphical methods, such as the ACF and
PACF plots are vei'y useful in the identiﬁcation'stage (Box and Jenkins,

1976:173). Nonstationarity can be recognized by examining either the

_ time series plot, or more commonly, by the graph of the ACF.

For an equally spaced time series {y;:t=1,....n} we use y to

represent the sample mean. where y = (Z)’.-)/ n, and we define the kth

sample autocovariance coefficient,

8= Y0~ P0u-Din (37)

tnk+]

Then the kth sample autocorrelation coefficient is

5= if' (38)
The plot of rj. against k is called the correlogram of the data.
Correlbgrams are often used to check for evidence of any serial |
dependence in an observed time sérievs. Values of rj greater than 2/Vnin
absolute value can be regarded as significant at about the 95% level.
More often, the correlograms are used to suggest the order for |
autoregressive models. The reliability of the correlogram for this purpose
increases with the length of the time-series on which it is base_d. (Diggle,

1990: 39-47).
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For the majority of the AFTAC data, sufficiently short periods of
data are used in the analysis that the data can be considered stationary
even if some level of nonstationarity exists (Jenkins, 1968: 151). Hoff
writes extensively on using the ACF and PACF plots to identify the order
of autoregression. In the book A Practical Guide to BOX~-JENKINS
Forecasting, Hoff gives many examples of the various types of time series
one may encounter and the order of autorcgression normally applied to
that specific data series (Hoff, 1983:54-86). These examples guided the
determination of the proper order of autoregression for the AFTAC data
sets, although the patterns in the actual data are not as obvious as those
in the examples given in the literature. The expected patterns are for
infinitely long realizations (McCleary, 1980:94). All the authors suggest
that a relativély long series of data is required for time series ahalysis.
Box and Jenkins say at least 50 observations, and preferably over 100
observations, should be used (Box and Jenkins, 1976:18).

The autocorrelation function plot and partial autocorrelation
function plot for the Site 889 data set currently under discussion are
shown in Figures 10 and 11. The ACF and PACF plots should be viewed
together and a judgment made from both (Mykytka, 1991). In the case

\
\
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under study, the ACF indicates a strong correlation of the data out to lag
t 70. In this context, strong is deﬁned as significant above the 2.5 o line.
However, when the PACF is used in conjunction with the ACF, it
indicates that the correlation is actually only good at lag 1. Other lags
show levels of significance above the 2.5 o line, but are sufficiently far
out in lags to reduce their importance to the model. The lag value"at lag
8 also shows significance and bears further investigation. L

It is necessary to point out that the ACF and PACF plots are just
one of many tools uséd to determine the best order of autoregression for
the model. This information will be combined with other results for final
formulation. This does however, give an excellent starting place 1a
identifying the order of the model.

Because the two plots are not definitive, two additional techniques
to aid in the determination of the AR order are applied. In the next case,
the results from the RLS output of PROGRESS are used to provide
statistics on which AR order to use.

Confidence Tests. The ACF and PACF results have now given a
starting point for final determination of the AR order appropriate for the
outlier detection model. The ACF and PACF plots suggest an appropriate
AR order. This is then used to test the hypothesis that the coefficients
are significantly different from zero.

To determine a confidence level in the regression coefficients, a test
based upon the ACF and PACF plots was used. Confidence intervals
based upon a Student distribution with n - p degrees of freedom are then

applied. For this test a 95% confidence interval is used. The

hypotheses are
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" Hy: 6,=0 (null hypothesis )
H,: 6,#0 (alternative hypothesis)

(39)

This type of test can be helpful in determining if the ith coefficient
might be deleted from the model. If the null hypothesis in Equation 39 is
accepted for a certain confidence level, the ith coefficient contributes
little to the exj)lanation of the response variable and can be removed
from the model (Rousseeuw, 1987: 40-41).

The PROGRESS code was chosen as the diégnostic tool fo test the
hypothesis on the suggested coefficients. Based upbn the ACF, a
regression model based upon the first, second, and eighth lags may be
appropriate. The PACF suggested that only the first and eighth'are
actually significant in predicting the response variable. Using. this
information, PROGRESS was run on the data set using a combination of
the lags as predictors. ”

Two statistics which can be used to test the validity of the model
are the F and t-tests. For the F-test, the hypotheses being tested is
whether the entire vector of regression coefficients, excluding the

constant term, equals the zero vector. This is the same as

H,: All nonintercept 8,'s ars together equal to zero

H,: H, is not true

(40)

The t-test then determines which of the coefficients are necessary.
P-values are also computed by the PROGRESS code. The P-value
indicates the level of statistical signi.icance of the hypothesis that the

predictor variable has an effect on the response variable. It is the
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- Table 5

- P-Values for Regression Coefficients

Variable Lagl = Lags1&2 Lags1&8 Lagsl. 2 &8
Lagl  0.00000 0.00000 0.00000 0.00000
Lag2 - 0.00058 - - 0.00152
Lag 8 . - 0.64052 0.59441

probability that the observed fit would occur as a result of random noise
in the data. Thus, a small P-value indicates that the fit is statistically
significant. An example of the calculation results is given in Appendix D
on page 100. The results are presénted in Table 5.

The coefficie:it for Lag 1 was kept in all combinations since both
the ACF and PACF plots indicated it was significant. As Table 4 shows,
based on the P-values, the coefficient for Lag 8 is not significant at the
95% confidence level and should be eliminated from the model. In both
cases where Lag 2 was used, the P-value indicated it was significant at
the 95% confidence level.

If the calculated P-value of the associated F distribution is less
than the 95% confidence level, then Hgp above can be accepted. If not, it
must be rejected (Rousseeuw, 1987:43). Unfortunately, for the cases

considered here, the P values associated with the F-test values were all

54




near zero and could be considered valid. Therefore, this test provided no
additional infonhation for this data set.

For this reason, additional confidence tests should be performed.
Another test that considers how each coefficient individually effects the
regression when combined with others is thé stepwise regression.
Stepwise regression provided the ﬁrial check of the model parameters.

Stepwise Multiple Regression. In addition to the specific values
given above for F-tests, stepwise multiple regression can be used to
determine which explanatory variables are significant. Stepwise multiple
regression returns only those variables with signiﬁcant values for the
F-test at speciﬁéd levels.

For this portion, MINITAB software performed the stepwise
multiple regressicn on the RLS output data. The results for Site 889 are

given in Table 6, which lists the constant term, the coefficient for each

| regression term, the T-ratio for each coefficient, and the sample standard

deviation and R2 value for each step. At each step, MINITAB calculates
an F-value for each of the explanatory variables given. In the cases
evaluated, the explanatory variables were the lag values for
autoregressive order one, two, and eight as predicted by the ACF and
PAqF. If the t-test value of any explahatory variable is less than the
spec\iﬁed value of significance, the variable with the smallest F-test value
is removed from the model. MINITAB then calculates a new regression,
prints the results, and proceeds to the next step. Once the stepwise
regression reaches the point where no explanatory variables can be

added |or removed from the equation, the procedure ends (Schaefer and

Farber, 1991: 261-268).
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Table 6 lists the constant, T-value, and regression coefficient for
each set of variable used. The first step of the stepwise regression
calculated the regression with all three explanatory variables in the
equation. For the second step, the T-value for the Lag 2 component was
too small and it was removed. Finally in the third step, the T-value for
the Lag 8 component was below the level of significance and was

removed, leaving bnly the AR(1) componernt.

Table 6

Stepwise Regression of Site 889
(MINITAB Output)

STEP 1 2 3
CONSTANT 600.9 581.1 625.1
lagl 0.627 0.600 0.618
T-RATIO 7.92 8 98 9.81
lag2 -0.048
T-RATIO -0.64
lag8 0.055  0.047
T-RATIO 0.92 0.80
S 470 469 469
R-5Q 38.58 38.42 38.16

While the F and t-test results were inconclusive, the results from
the stepwise regression indicated that only the AR(1) component of the
data was statistically significant in fitting the data. Based upon these

results and those of the ACF and PACF plots, an autoregression of order
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one applied to the reweighted least squares process proved to be an
adequate model of the data examined. |

_ Diagnostic Checking. Having identified fhe process, the model can
now be tested. For this portion, a final run of PROGRESS used the
observed data as the response variable and a lag of one day for the
explanatory variable. As a final check to the validity of the AR(1) model
applied to the RLS procedure, the ACF of the residuals was calculated
and plotted. A good model will leave only white noise and has no
remaining pattern in the residuals. The ACF will all be insignificant
(Makridakis, 1983:446). However, at the 0.05 significance level, a

chance does exist for a few significant spikes in the ACF at distant lags |

(McClea:y. 1980:99). The ACF plot for the residuals based on the AR(1)-
'RLS results from PROGRESS is shown in Figure 12. |
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The ACF plot shown in Figure 12 indicates that the residuals are
essentially white with no significant spikes. This plot provides strong

evidence that the coefficients chosen ror the model are significat.

Conclusions

Using the methodology discussed in this chapter, the tests
performed indicate that an autoregressive order of one applied to the
reweighted least squares procedure provides an adequate model of the

data set examined. This data set was fit to insure that the explanatory
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variables were significant. Coeflicients that proved significant were kept
while any which were insignificant were droppcd. o

Goodniess of fit tests on all coeflicients determined their statistical
tmportance. Additionally, PROGRESS and MINITAB codes calculated
ANOVA type statistics for all combinations of cocflicients considered in
the model. As a In‘st validity (‘h‘cck,. stepwise regression was performed
on the model. Finully; results of residual tests were rx:nnl'ncd to ensure
the residuals left only white noise.

| On the basis of the tests performed in this ('Iinpter. I concluded
that an AR(1) method applied to ‘rcwrlghted least squares was an
appropriate model of the data. The next chapter discusses the results of

the AR(1)-RLS methodology as ;ipplird to five other data sets which

AFTAC provided.
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V. Results

The results of the data analysis using the methodology developed

in the previous chapter are discussed in this chapter. Results are

‘reported for cach of the five sites for which data was provided.

The first conclusions are drawn from graphical displays of the site
data, including time series plots, correlograms and scatter plots. These
will be used to assist in identifying the o_rdcr of autoregression
appropriate for the model. In addition to the graphical displays,
confidence test results will be analyzed for the various coefficients of
regression. Results from the ANOVA statistics confirm that Ak(l) is the
appropriate order of autoregression for the final outlier dctcctl;on model.

Following the discussion of model choice, the outlier rc;ults from
the AR model are discussed. These results will then be comprircd With
those of the RRR and derivative methods. The main point is l;ot to
develop a model that will best ﬂf data scts from one site, but tb develop a
model that can adequately fit data from any site. How well thft AR(1)-RLS
model performs In comparison to the RRR and dervative mctl:mm; will

1

determine its usefulness to the analyst,

For each of the five sites for which AFTAC provided data. the first
300 days in 1989 are analyzed. The analysls was restricted to 300 day
blocks by the input array size limitations of the PROGRESS code
provided by 11 Roussecuw. In addition to the 300 day analysls,
analysts wos performed on the subsets of the data from Site 996 to
determine the relative etlectiveness of the method when employed on

varions sizes of data sety,
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Analysis of Graphical Displays

The first step in analyzing the data is to display the site data as
time series plots. The time series plots for sites 858, 981, and 996 were
shown previously in Figure 3. Correlograms, ACF and PACF plots, were
created for each site and are shown in Appendix E. These plots were
used to provide a first approximation of the order of autorég’fession to
apply to each data sct. For each site, the corrclograms suggéstcd that an
order no greater than three would provide the basis for furthef |
investigation into the final order 6( regression for the model. 'i‘hls
decision was made because only the PACF plof from Site 858 had a
significant ri beyond lag three. Again, the idea is to try to fit a model

that supports identification of outliers from any site, not just'onc specific

site.

Confidence Tests

As In the previous chapter, the RLS regression was used to provide
ANOVA type results on the fcgrcsslonﬁcocmclcnts used in the model.
RLS regression was performed on all five sites using lags one, two, and
three as the cx;ilanmory variables. In addition to the lags, the date of
occurrence (t In the time series) was used as the explanatory variable. As
’cxpcctml.‘umc Is not a good ()f(f(lictor of future values or in identifying

outliers. These RLS results using time as the predictor are presented in

Tuable 7.
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Table 7
Regression Results Using Date as Explanatory Variable

For Site 996
Variable Coeflicient Std. Err t-Value P-Value
Julian Date 0.063 0.05734 1.10158 0.27263
" Constant -4301.847 5113.58900 -0.84126 - 0.40171

Table 7 illustrates that the Julian date is a poor predictor of the K-value
for that date. The P-value indicates it is not significant at the 95%
confidence level. Additionally, the t-value is not significantly different
from zero and the coefficient is extremely close to zero. These results,
along with an R2 value of 0.00904 and a P-value based on the F-test of
0.27 clearly illustrate that the Julian date should not be used asa
predictor for the K-value in this model.

The next step in the test methodology was to perform the AR(1)-
RLS regression for up to lag three for all five data sets. From this
analysis, PROGRESS calculated the R2, o, and P-value for the F-test for
each order of regression as well as the P-values for each of the
coeflicients in the regression. These results, along with the stepwise
regression to be performed later, provided the best estimate of the
autoregressive order to use in the model.

F-Test Results. The group of P-values for the F-test of regression

cocflicients obtained for cach site provided no conclusive results. This is
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the same problem encountered in the previous chapter. The P-values for
all combinations of coefficients for the five sites were zero. This indicated
that overall, lag one, lags oné and two, or lags one, two, and three tested
equally Well in predicting the response variable. This meant that the R2,
o, and the P-values for the individual coefficients would have to be used
to determine the order of regression. _ | |
Acy‘usted R2 Results. The adjusted R2 results (hereafter referred to
only as R2) from the AR(1)-RLS runs are shown in Figure 13. R2, or the
coefficient of determination, iS a measure of the strength of the linear
relationship between the response variable and the explanatofy
~ var.ables. R2 measures the proportion of total variability explained by
the regression. In the simple case with a constant term, the coefficient of
determination equals the square of the Pearson correlation coefficient

(Rousseeuw, 1987: 42). Unfortunately, the results based upbn the

[.tql Oregra2 .LQI.Z.&S]

Figure 13. R2 Results from AR(1)-RLS
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adjusted ‘R2. were inconclusive and other factors need to be éxamined.

Scale Factors. The next test for goodness of fit is the scale factor
(c"). ‘The scale factor is a robust version of the sample standard
deviation. The best model should provide the lowest scale factor for a
given site. Since the objective is to provide a model that performs best
overall, we want to minimize the scale factor over all the sites. For each
of the sites, the scale factor was calculated for each of the three lag

combination regression models. The results are shown in Figure 14.
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Figure 14. Scale Factors by Site

The results of the scale factors are as unenlightening as those of
the R2 test. Based on these results, no definitive conclusion can be
drawn between using any of the three lag combinations. Depending on

the site, the difference in scale factors ranged from 2-13%. Therefore,
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the scale factors indicate that either set of coefficients applied to the
AR(1)-RLS model appears to perform about equally.

P-Values of Coefficients. The next test for goodness of fit is to look
at the P-values of the individual coefficients. The P;va]ucs for the F-test,
which fit all of the regression coefficients together. was significant at the
95% confidence level, those for the individual coefficients indicate they
should be rejected. For sites 858 and 996, the P-values for the

coefficients for lag 2 and for lag 3 all exceeded the 5% level. This implies

these coefficients would have to be rejected at the 95% confidence level.
Stepwise Regression. The final test in determination of the
coefficients to be used in the outlie* detection model is to perform a

stepwise regression on the coefficients. This procedure was discussed in
the prévious chapter. Again, the M‘lNITAB softwaré performed the
stepwise regression. For each site &ested, lag 2 and lag 3 were
systematically eliminated from the !regression Each case left the lag 1
coefﬁcient as the only significant co‘efﬁcient in the regression model.
Conclusicns of Confidence Tegts The final conclusion reached was
an autoregressive order one reweighted least squares model (AR(1)-RLS)
was the most appropriate model owJ:ré]l. While systematically adding lég
2 and lag 3 parameters to thé AR(I)I-RLS model gave better results at
specific sites, the lag 1 AR(1)-RLS model provided the best overall results
that spanned the sites. Furthermore, while the R2 test, the P-value, and
F-test proved inconclusive individually at each of the sites, the stepwise
regression clearly indicated that lag 1 was the best choice for the model

independent of the site.
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Method Comparison

Once the order of autoregression for the AR(1)-RLS mbdel was
determined, the test methodology was validated by compaﬁng the
AR(1)-RLS results with those of the RRR and derivative methodé. The
- three models, AR(1)-RLS, RRR, and derivative, were run with 300 days of
data from each of the five sites. From these model runs, the number of

outliers found by each method was tabulated. The results are shown in

Figure 15.

Number of Outlers
] 8

[ /LS 8 oeivaive IS rRR J

Figure 15. Number of Outliers by Method

For both the RRR and AR(1)-RLS methods, the cutoff for detecting an
outlier was set at 2.5 o. This was done to ensure both models were

working at the same level of significance. The normal cutoff for the RRR
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method is 3.0 0. The cutoff for the derivative method was Z)>5 (for the
first derivative vanable) and the corresponding Zo<-5 (for the second
derivative variable). This equates to a 95% probability that the event was
significant.

In all cases, the AR(1)-RLS method detected more outliefs than the
~ derivative or RRR methpds. In some cases, such as site 889, the
difference was dramatic. For all the site data analyzed, the AR(1)-RLS
method found all of the outliers identified by the RRR method.

The time series discussed previously in the test methodolog'
section was again analyzed with the AR(1)-RLS and .the RRR models. The
AR(1)-RLS model used a cutoff of 2.5 o and the RRR model used both 2.5
and 3.0 0. The use of the two different ¢ values for the RRR method is to
show that the method is not particularly sensitive to the two different o
values. Figure 2 on page 13 illustrates the RRR method used at the 3.0
o level. The next two figures illuétrate the differences in the AR(1)-RLS
and the RRR methods' capabilities to detect outliers at the 2.5 o level.
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The most striking feature of both of the RRR plots, Figures 16 and
17, is that the significance line tends to follow the data plot, anticipating
when the k-values are going to rise. The problem here is that the RRR
‘method uses the data after a point, as well as that before to predict the -
point. As in the case of the data presented here, the RRR method often
overlooks obvious outliers in the data. The AR(1)-RLS model however,
accurately predicts the major changes in the data. It illustrates the
capability of the method to detect the significant outliers. While the 3.0
and 2.5 o RRR methods only identified two and three outliers
respectively, the AR(1)-RLS identified ten obvious outliers. The RRR
methods only identified ti1e most obvious and largest outlier. ‘

Figure 18 is an enlérgemcm of Figure 17. This figure more clearly
illustrates how the AR(1)-RLS method fits the data. The leading edge is
accurately identified as an‘outlier. but the trailing edge values are
predicted by the AR(1) model as usual return to background level. The
values for days 91320, 91322, and 91326 are high and identified as
such. However, while days 92321, 91323, and 91327 are high, they
represent the subsequent decay of the previbus days large value and are
accurately accounted for by the model. The observation that they are |
lower than the model predicts suggests that the days identified as
outliers we very significant for this site. The simplicity is that AR(\I)-RLS
flags these values for further consideration by the AFTAC analyst while

RRR misses them completely.
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Subset Analysis

The final step in the method analysis process is fo study the effect
of different sizes of data sets on the detection of outliers. This study is
necessary in order to determine the optimum sample size on which to
perform the analysis.

After graphing the data, analysts are often interested in the
statistics surrounding a particular point of interest. The question arises,
is it an outlier or is it a good data point? This particular study was
performed to look at the effect of population or window sizes on the

outlier detection capability of the model.
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Three sample sets with suspected outliers were selected. For cach
of these sample sets, subsets of 30, 50, 75, 100, and 300 days were
used. Each data point that appeared to be an outlier, was identified as
such in the analysis of every subset in which it occurred, regardless of
the size of the subset. Where the results varied was on days that are
very close to the threshold level of significance. That is to say, a data
point that fell just below the 2.5- line of significance in one size subset
might b;e above this cutoff in another. The determining factor appears to
be the amount of noise in the data. In general, one would expect that the
larger the sample size, the larger the number of outliers the model will
detect. This was not necessarily the case here. Overall, the method was
insensitive to the sample size. waever. on the basis of wbrk by Box and
Jenkins, the minimum sample size should be 50 and preferably '100‘

should be used (Box_ and Jenkins, 1976; 18).

Summary

The autoregressive order one reweighted least squares (AR(1)-RLS)
model produced the best results over the range of the data &' .Uy. ed. The
confidence tests, incliiding the P-value for the individual coefficients, R2,
and the scale estimate each gave inconclusive results as to which
coefficients should be kept in the model. In the final analysis, the
AR(1)-RLS model was selected baséd upon the results of the stepwise

regression. The stepwise regression, for each of the five data sets,
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indicated that lag one was the only significant predictor, and that lags
two and three should not be used in the model.

The subset analysis performed, along with previous work by Box
and Jenkins, sﬁggests that a large data set size is desirable. The exact
size of the data set to be used was not determined. There is no need to
seek an exact best data set size, since the identification of significant
outliers is very insensitive to the data set size. Data sets Qf 50 to 100

days (2 to 3 months) seem appropﬁatc.
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V9. Conclusions & Recommende. inns

Introduction

The objective of this research was to develop a methodology to
improve on or supplant the existivg procedure for identifying stgnificant
outlicrs in tin:e servies data. Comparisens were tiade between the results
of the RRR method, the derivative method and the autoregressive order
one rewelghted least squares (AR(1)-RLS) method developed in this
paper.

A summary, conclusions, and recommendations f.l'()tn this eflort
are presented based on the results of the techniques applied. On the
basis of the work presented here, 1 concluded that the AR(I):RIA‘& method

provided the best outlier detection model.

Observations

Based principally upon stepwise regresston, the AR(1)-RLS can be

expeeted to be an adequate, and probably optimal, model for fitting the
full range of AFTAC data, regardless of the site. (The five sample data
sets were selected by AFTAC to span this range and order one provided

the best AR model for all sites)
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For the five sample sets provided by AFTAC, AR(1)-RLS tound every
set of outlicrs that RRR found. Thus AR(1) RLS can be expected to
overlook fow or none of the outliers that RRIQ can find

AR(D) RLS appears to be insensitive to the data set slze used in
performing the anatvsis. This is contrary to RRR which is extremely
dependent on the data set size tn determining whether a particular point
is an ontlier. Additionally, AR{(1) RLS does not require two weeks of data
beyond the day of interest to perform its analvsis, making it much more
thnely in detecting outliers.

Unlike the derivative method, AR(1) RLS requires no special
ticatment of the data to handle missing data. Furthermore, no
smoothing of the data is required to remove any non-stationarity.

Finally, AR(1) RLS found four times as many vutliers as RRR found

i the data sets,

Conclusions

The AR(1)-RLS miethod is more effective than the RRR and should
replace it. The Inclusion of higher order lags is unjustified and the -
stmplicity of AR(1) makes it an attractive method to usé. The AR(1)-RLS
method developed here is successful in locating all outliers identified by
the RRR method as well as many others that the RRR method overlooks.
Additionally, the AR{1)-RLS method will identify not-so-obvious outliers
that bear further Investigation by the analyst to determine their

importance.
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‘ In addition to the nhvio-nq outliers that the AR(1)-RLS method
drtrcis. it does an cxrrllmf job at explaining why some data points,
which appear to be outliers, :lrr. not outliers, ‘By correctly fitting the
data, a successive outlier is identified as a relic of the previous

fluctuation and is not itself significant.

Recormmendations

In order for this method to receive full acceptance by AFTAC, it will
be necessary to modify Dr. Rousseeuw's PROGRESS code. The most
important modification, and perhaps the only one absolutely necessary,
is changing the o cutofl value from a fixed 2.5 to an input varfable. This
will allow the PROGRESS code to operate at the s:ﬁnc level of signlﬂmncc
As AFTAC's recursive removal withy it regression method.

There are several other possiba tles to improve upon the work
presented in this thcslé. the first of which Is the addition of a spatial
parameter to try to incorporate mcteorological effects seen ovcr_‘
gcogmphlcally close sites. Consideration should be given to future
improvements such as coupled space and‘t ne modeling for

geographically related sampling sites.
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Appendix A: Recursive Relection without Regression BASIC Code

This appendix contains the BASIC code for AFTAC's recursive
rejection without regression (RRR) method. This code was adapted from
the PL/1 version of the code pmvidcd to me by AFTAC. The code was
used to produce the RRR results discussed in Chapters IV and V.

RRR program

this program takes the value data and performs a Recursive Rejection
without Regression (RRR) on the data points. This is the method
currently in place at AFTAC/TNR. Code adapted from PL/1 code

provided
" by AFTAC/TNR in November 1992.

ver$ = "RRR.bas, Version 1, written by Capt Keri L. Robinson, GNE93M, .

8 Dec 92"
CLs
DEFINT I, L-N
\
TYPE file |
filename AS S’I‘LNG * 40
END TYPE

DIM infile AS file
DIM outfile AS file
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DIM tempfile AS file

INPUT "Enter the name of the data file including path: ", inﬁle.ﬁlenamé
OPEN infile.filename FOR INPUT AS #1

"INPUT "Enter the name of the output file including path: ";

ouiﬂle.ﬁlename
OPEN outfile.filename FOR OUTPUT AS #3

reading in data file for the number of records

n=0
=0
DO

n=n+1

INPUT #1, aa, bb
LOOP UNTIL (EOF(1))
CLOSE (1)

PRINT "This file contains "; n; " records.”

REDIM a(1 TO 30) '30 day array

REDIM value(l TO n)  ‘daily value

REDIM jdate(1 TO n) ‘Julian data of data

REDIM sd(1 TO n) 'daily standard deviation above background




REDIM sigout(l TO n) AS STRING 'mark the status of the da’ . oint -
REDIM smean(l TO n) ‘calculated background value |

REDIM drop(1 TO n) 'numbevr dropped from each window calcu. 1ition
REDIM dropped%(1 TO 30)

CONST False =0
CONST True = NOT False

OPEN infile.filename FOR INPUT AS #1
FORiIin=1TOn

INPUT #1, jdate(in), value(in)
NEXT in
CLOSE (1)

FORin=15TOn - 15

npts =0

sum =0

sum2 =0

i=0

sigma = 3

IF value(in) -:> 0 THEN

FORin=in- 14TOin+ 15

=i+ ]
a(i) = value(ia)

NEXT ia
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DO
i=1+1
a = afi)
dropped%li) = False
IF a <> 0 THEN

- sum = sum +a
sum2 = sﬁm2 +a‘*a
npts = npts + 1
END IF
LOOP UNTIL i = 30
amean = sum / npts
sdev = SQR((sum2 - (sum * 2 / npts)) / (npts - 1))
numptsdrp = 0
drp=0
DO -
numptsdrp = drp
drp=0
1=0
DO
i=i+1
a = ali)
IF a <> 0 THEN
IF ABS((a - amean) / sdev) > sigma AND
dropped%!li) = False THEN

sum =sum - a
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sum2 =sum2 - (a * a)
npts = npts - 1 |
drp=dp+1
dropped%l(i) = True
ELSEIF dropped%!(i) = True THEN
drp =drp + 1 |
END IF
ELSE
drp=drp +1
END IF
LOOP UNTIL i = 30
sdev =10
sdev = SQR({sum2 - (sum * 2 / npts)) / (npts - 1))
amean = sum / npts

LOOP UNTIL numptsdrp = drp OR drp > 15 'OR npts < 15

sd(in) = (value(in) - amean) / sdev
smean(in) = amean
drop(in) = drp
' PRINT jdate(in), value(in), smean(in), sd(in) o
IF sd(in) > sigma THEN
Sigout(in) ="+ ‘Specifies the value as an outlier
ELSEIF sd(in) < sigma THEN
sigout(in) = "0"  'Specifies the values is a good data point
END IF

ELSEIF value(in) = 0 THEN
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sigout(in) = "-" ‘Specifies the value not used in

calculations
END IF

NEXT in

FORiIn=1TOn
PRINT #3, jdate(in), value(in), USING "#####.# " smean(in);

PRINT #3, USING "##.### " sd(in);
'PRINT #3, sigout(in), dropfin)
NEXT in

CLOSE (1)
CLOSE (3)
END




Appendix B: Derivative Method BASIC Code

This appendix contains the BASIC version of the derivative method
written by Dr. Lloyd Currie. The code was adapted from the FORTRAN
version provided by AFTAC. The results of this code are discussed in

Chapters IV and V.

DECLARE SUB NormalStdDev (sampavg!(), j!, ndays%, sigma!(, stddev!(})
DECLARE SUB interp (samp!(), n%)
DECLARE SUB average (samp!(}, sampavg!(), n%)

program currie

" this program takes the sample data and performs the currie
' algorithm on the data. This is a modification of the FORTRAN version

" of the currie code provided by AFTAC.

ver$ = "Currie.bas, Version 1, written by Capt Keri L. Robinson,
GNE93M, 1 Oct 92"
CLEAR

DEFINT I, L-N
TYFE file

filename AS STRING * 40
END TYPE
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DIM infile AS file
DIM outfile AS file
DIM ‘tempﬁle'AS file

INPUT "Enter the name of the data file including path: “; infile.filename
OPEN infile.filename FOR INPUT AS #1 |

INPUT "Enter the name of the output file including path: "

outfile.filename
OPEN "d:\tmp\temp.out” FOR OUTPUT AS #3

' reading in data file for the number of records
n=0
i=0
DO
| n=n+l
INPUT #1,a, b
LOOP UNTIL (EOF(1))

CLOSE (1)
PRINT "“This file contains "; n, " records."”

REDIM samp(l TOn)  ‘Raw data
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REDIM sampavg(l TO n) ‘Three day averaged data (smoothed)
'REDIM dif3(1 TO n) ‘First difference of smoothed data
REDIM dif33(1 TOn) 'Second difference of smoothed data
REDIM zfacl(l TO n) 'Z-Factor of the first difference

REDIM zfac2(1 TOn) 'Z-Factor of the second difference
REDIM jdate(1 TO n) ‘Julian data of data

OPEN infile.filename FOR INPUT AS #1

FORin=1TOn

INPUT #1, jdaté(in). sampl(in)
NEXT in
CLCSE (1)

' data check and interpolating missing values up to 2 days
CALL interp(samp(), n)

' calculating the 3 day moving average
CALL average(samp(), sampavg(), n)
' calculating the first divided difference

' This is an attempt at an unbiased first derivative by using points

' in the numerical approximation to the derivative at a point which
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' were not used in calculating sampavg. sampavg(i) is a function of (i-
1.L,i+1), ‘ | |

' so to do the first difference unbiased. you must go to sampavg(i-3) for
' backward difference in order not to uSe points used in sampavg(i)

' This all assumes that no data are missing

FORi=5TOn-1 |
IF ({sampavgli - 3) <> 0') AND (sampavgli) <> 0')) THEN
dif3(i) = sampavg) - sampavgl - 3)
END IF o
NEXT

calculating the second difference

the method of using unbiased data applies here, but the method used

for

' the second difference is works out to be

' 'sampavg(i)"=sampavg(i+3)-2‘sampavg(i)+sampa§g’(i-3)

FORi=5TOn- 4
IF (dif3¢ + 3) <> 0! AND dif3(i) <> 0!) THEN
dif33(i) = dif3(i + 3) - dif3(i)
END IF | |
NEXT

' calculating sigma for dif3 and dif33
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' here rbar is the range between the two values calculated above. This

' is used later to approximate sigma for the group of data of interest.
' This method is fully described in Thomas P. Ryans book "Statistical
' Methods for Quality Improvement" pp 82-86.

DO

INPUT "How many days do you want in the windoW’? (min 20)",
ndays
LOOP UNTIL ndays >= 20

ndays = INT(ndays / 2) ‘
OPEN outfile.filename FOR OUTPUT AS #2

i
!
i

FOR j = (ndays + 2) TO (n - ndays) 'Needed to have sufﬂéicnt days in the
i loop | | |
rbarl = 0! : 1
rbar2 = 0! {
numl =0 ’
num?2 =0 |
FORi = j -- ndays TO j + ndays  'using a nday moving average
IF ((dif3(i - 1) <> 0!) AND (dif3(i) <> 0!)} THEN
rbarl = ABS(dif3(i - 1) - dif3(i)) + rbarl
numl = numl + 1
END IF
IF ((dif33(i - 1) <> 0!) AND (dif33(i) <> 0!)) THEN
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rbar2 = ABS(dif33(i - 1) - dif33(1)) + rbar2

num2 = num2 + 1
ENDIF
NEXT i

REDIM sigma(1 TO j)

REDIM stddev(1 TO j)

CALL NormalStdDev(sampavg(), j. ndays, sigmal), .stddev())
* PRINT #2, jdate(j), stddev(j) |
' Calculate sigma for the first and second difference.
' The number 1.128 comes from a table ‘constructed to allow the
average | |
" of the ranges to be divided by this constant so that the resultant

' number is an unbiased estimator of sigma. This is from Table E, pg

434
' of Ryans book.
IF numl = 0 THEN ‘check for no data is calculation
sigmal = -1 \
ELSE

sigmal =rbarl / (1.128 *(num1l))

END IF

IF num2 = 0 THEN ‘check for no data is ‘caqufation
sigma2 = -1.

ELSE

sigma2 = rbar2 / (1.128 * (num?2))
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END IF
PRINT #3, rbarl, sigmal, rbar2, sigma2

" calculating zfactors for both dif3 and dif33

' The Z-factor or Z-score calculated below is a probability that a value
' is outside a range defined by a normal distribution. Z-scores
represent

' the area under a normal curve from the mean to a pont on the curve.
' This assumes the value we want to compare to, mu, is zero. The |
' Z-score calculated here is (average-mu)/sigma. The differences are

our

' average, and the estimated sigma is calculated above.

IF numl < 15 OR sigmal = -1 THEN 'signifies not enough data

for good

zfacl(j) = -1 'statistics

ELSE '
zfacl(j) = dif3(j) / sigmal

END IF

IF num2 < 15 OR sigma2 = -1 THEN
zfac2(j) = -1

ELSE

zfac2(j) = dif33(j) / sigma2
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 ENDIF
NEXT j ' | | )
. | | g

' printing output

PRINT #2, "The following is based on an"; ndays * 2; "day moving
~ window" |

PRINT #2, | | |
PRINT #2, " Date  Sample AVG3 = DIF3 DIF23 ZFACl
ZFAC2" | | |
FORi=1TOn

PRINT #2, USING "##### "; jdate(i);

PRINT #2, USING CRHEEE A sampn(i); sampavg(bi):

PRINT #2, USING “####.### " dif3(); dif330);

PRINT #2. USING "###.#### "; zfacl(i); zfac2(i)

NEXT i

CLOSE (2)
CLOSE (3)

END

SUB average (samva. sampavg(), n)
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FORi=2TOn- 1
IF ((sampli - 1) <> O!) AND (sampl(i + 1) <> O!) AND (samp(i) <> ON)
THEN
| sampavg(i) = (sampl(i - 1) + sampli) + samp(i + 1)) / 3!
END IF
NEXT

END SUB

SUB interp (sampf{), n)
' dé.ta check and interpolating missing values up to 2 days
FORi=2TOn-2
IF (samp(i) = 0! AND sampl(i + 1) = 0! AND samp(i + 2) = 0!) THEN
samp(i) = O! '
samp(i + 1) = 0!
sampfi + 2) = 0!
ELSEIF (sampli - 1) = 0! AND samp(i) = 0!) THEN
samp(i) = O! '
ELSEIF (sampl(i) = 0! AND sampfi + 1) = 0!) THEN
sampl(i) = (samp(i - 1) * 2! + sampf(i + 2)) / 3!
sampl(i + 1) = (sampli - 1) + sampl(i + 2) * 2!) / 3!
ELSEIF (samp(i) = O!) THEN
- sampl(i) = (sampli - 1) + sampl(i + 1)) / 2!
END IF
NEXT i
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END SUB

SUB NormalStdDev (sampavg(), j, ndays. sigma(), stddev()

sampsqr =0 -
samptot = 0

npts =0

FOR ij = (j - ndays) TO (j + ndays)
IF sampavg(ij) <> 0 THEN |
sampsqr = sampsqr + (sampavg(ij)) A 2
samptot = samptot + sampavg(ij)

npts =npts + 1

END IF
NEXT ij
‘calculate the sigma for the window
IF npts < 15 THEN ~'min pts to be used in a sigma calculation
sigma(j) = 0 . e
ELSE
sigma(j) = SQR((sampsqr - (samptot A 2 / npts)) / (npts - 1))
bkg = samptot / npts
stddev(j) = (sampavg(j) - bkg) / sigmaf(j)
END IF .
'‘PRINT "The value is "; stddevf(j); "outside the normal background.”
END SUB
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Appendix C: Data Listing for PROGRESS Run in Appendix D

This appendix contains a listing of the data used in the Test

Methodology chapter of the thesis. This data was used as input for the

PROGRESS code output in Appendix D.

Lag 2 Lag 3

Julian K-Value Lag 1

Date

91201 1528.8 1543.5 1483.5

91202 1473.8 1528.8 1543.5 1483.
91203 1422.7 1473.8 1528.8

91204 1389.9 1422.7 1473.8

91205 1382 1389.9 1422.7 1473.
91206 1406.2 1382 1389.9 1422.
91207 1384.5 1406.2 1382 1389.9
91208 1445.8 1384.5 1406.2 1382
91209 1411.2 1445.8 1384.5 1406.2
81210 1383 1411.2 1445.8 1384.5
91211 1372.5 1383 1411.2 1445.8
91212 1369.7 1372.5 1383 1411.2
91213 1374.6 1369.7 1372.5 1383
91214 1436.5 1374.6 1369.7 1372.5
91215 1399.3 1436.5 1374.6 1369.7
91216 0 1399.3 1436.5 1374.6
91217 0 0 1399.3 1436.5
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Julian K-Value Lag 1 Lag 2 Lag 3
Date
91218  1421.7 0 0 1399.3
91219  1421.9 1421.7 0 0
91220 1422.7 1421.9  1421.7 0
91221 1427  1422.7 1421.9 1421.7
91222 1436 1427  1422.7 1421.9
91223  1440.2 1436 1427  1422.7
91224  1450.9  1440.2 1436 1427
91225 1463  1450.9  1440.2 1436
91226  1473.9 1463  1450.9  1440.2
91227 1506.9  1473.9 1463  1450.9
91228 1526  1506.9  1473.9 1463
91229  1517.3 1526  1506.9 1473.9
91230  1491.7  1517.3 1526  1506.9
91231  1429.5 1491.7 1517.3 1526
91232  1402.2  1429.5 1491.7 1517.3
91233 - 1383 1402.3  1429.5 - 1491.7
91234  1393.9 1383  1402.3  1429.5
91235 1398.1  1393.9 1383 1402.3
91236 1488 1398.1 1393.9 1383
91237  1555.6 1488 = 1398.1 1393.9
91238  1525.2  1555.6 1488  1398.1
91239  1614.3 1525.2  1555.6 1488
1613.2 1614.3 1525.2  1555.6




Julian K-Value Lag 1 Lag 2 Lag 3

Date

91241 1579  1613.2 1614.3  1525.2
91242  1358.9 1579 1613,2 1614.3
91243 1411.8 1358.9 1579  1613.2
91244 1479  1411.8 1358.9 1579
91245 1508.8 1479 1411.8 1358.9
91246 1461.7 1508.8 1479 1411.8
91247 1474.8 1461.7 1508.8 1479

91248 1460.1 1474.8 1461.7 1508.8
91243 14590.5 1460.1 1474.8 1461.7

91250 1448  1490.5 1460.1 1474.8
91251  1422.5 1448  1490.5 1460.1
91252  1412.7 1422.5 1448  1490.5
91253  1467.3  1412.7 1422.5 1448
91254 1497.2 1467.3 1412.7 1422.5
91255 1506.3 1497.2 1467.3  1412.7
91256 1547.3 1506.3 1497.2  1467.3
91257 1429.1 1547.3 1506.3 1497.2
91258 1512.3  1429.1 1547.3  1506.3
91259 1530.2  1512.3 1429.1  1547.3
91260 1529.8 1530.2 1512.3  1429.1
91261 1516.5 1529.8 1530.2  1512.3
91262 1422.4 1516.5 1529.8  1530.2

91263 1495.4 1422.4 1516.5 1529.8
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| Date

Julian K-Value

91264
91265
91266
91267

91268

91269

91273
91274
91275
91276
91277
91278
91279
91280
91281
91282

91283

91284
91285
91286

|

|

i

|

|

|

-
91270
91271
91272 -

1466.1

Lag 1 Lag 2 Lag 3
1495.4 1422.4 1516.5
1500.6  1495.4 1422.4
1488.6  1500.6 1495.4
1516.3 1488.6 1500.6
1512.5 1516.3  1488.6

1505 1512.5 1516.3
1497.7 1505 1512.5
1436.1 1497.7 1505
1457.2  1436.1 1497.7
1556.6 1457.2  1436.1
1546.6 1556.6  1457.2
1508.9 1546.6 1556.6
1478.5 1508.9 1546.6

1481 1478.5 1508.9
1462.8 1481 1478.5
1520.5 1462.8 1481
1532.2 1520.5 1462.8
1500.1 1532.2  1520.5
1493.6 1500.1  1532.2
1481.5 1493.6 1500.1
1501.5 1481.5 1493.6
1521.4 1501.5 1481.5

1467 1521.4  1501.5
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Julian

Date

K-Value

o
(o))
[yS]
-

o w [¢)}

1524.6

1535
1521.4
1513.2
1569.7
1555.
1512.

[o2 N 5 I o )}

1499,
1521.4
1543.2

1521.4

96

Lag 1 Lag 2
1466.1 14¢€7
1480.6 1466.1
1544.1 1480.6
1543 1544.1
1539.9 1543.5
1490.5 1539.9
1485.5 1490.5
1560.1 1495.5
1559.4 1560.1
1548.5 1559.4
1584.7 1548.5
1608.6 1584.7
1624.5 1608.6

0 1624.5
1524.6 0
1535 1524.6
1521.4 1535
1513.2 1521.4
.1569.7 | 1513.2
1555.6 1569.7
1512.3 1555.6
1499.6 1512.3
1499.6




Julian K-value Lag 1 Lag 2

Date

91312 1503 1511.5 1538.4
91313 3735.5 1503 1511.5
91314 5655.4 3735.5 1503

91316 2827  4450.3  5655.4
91317 1667.7 2827  4450.3
91318  1576.1  1667.7 2827
91319 1587 1576.1 1667.7
91320  4287.1 1587  1576.1
91321 2072 4287.1 1587

w
Yol
w
) w
(84} w ~J N [ w o oo [+)] w
-
o0}
o
(8]

97

1499.6
1521.4
1543.2
1538.4
1511.5
1503
3735.5
5655.4
4450.3
2827
1667.7
1576.1
1587
4287.1
2072
4156.
2898.
1513.
1805.

w o o o Ww

3933.
2806.1
1545.6
1516.7




Julian

Date

91348
91349
91350
91351
91352
91353
91354
91355

K~-Value

Lag 1

1527.9
1515.4
1485.1
1527.8

1527
1520.2

1510
1484.7
1478.8
1503.8

1516
1495.5

Lag 2 Lag 3

1493.7  1472.7
1482.7  1493.7
2023.8  1482.7
1623.4  2023.8
1527.9  1623.4
1515.4  1527.9
1485.1  1515.4
1527.8  1485.1

1527  1527.8
1520.2 1527

1510  1520.2
1484.7 1510
1478.8  1484.7
1503.8 1478.8

1516  1503.8
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Julian

Date

1534.

99

K-Value Lag 1  Lag Lag 3
1488.2 1489.6 1495.5 1516
1480.6 1488.2 1489.6 1495.5
1463.1 1480.6 ~ 1488.2 1489.6
| 0 1463.1 1480.6 1488.2
1507.1 0 1463.1 1480.6
1506.5 1507.1 0 1463.1
1522.6 15C6.5 1507.1 0
1534.8 1522.6 1506.5 1507:1

1488 1534.8 1522.6 1506.5

1483 1488 8 1522.6




Appendix D: Sample Output from PROGRESS Code

This appendix contains the output from the PROGRESS code
provided by Dr. Rousseeuw. The input data are listed in Appendix C.
This output is discussed in the Test Methodology Chapter.

Whhdk ok h bR wd b b

*PROGRESS *

28242222 a RS R]

This program performs a robust regression analysis based on
the least median of squares (LMS) method as described in
P. Rousseeuw (1984), Least Median of Squares Regression,
Journal of the American Statistical Association, 79, 871-880.
A user manual to this program is the book: .
P. Rousseeuw and A. Leroy (1987), Robust Regression
and Outlier Detection, Wiley, New York.

DATA SET = DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE
REGRESSION WITH A CONSTANT TERM.

NUMBER OF CASES = 165
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) = 2

THE EXTENSIVE SEARCH VERSION WILL BE USED.

TREATMENT OF MISSING VALUES IN OPTION 1: THIS MEANS THAT A CASE WITH A
MISSING VALUE FOR AT LEAST ONE VARIABLE WILL BE DELETED.

LARGE OUTPUT IS WANTED.
YOUR DATA RESIDE IN ¥'ILE : 201_365.DAT

VARIABLE LAGl VALUE HAS A MISSING VALUE FOR 4 CASES.
VARIABLE KVALUE HAS A MISSING VALUE FOR 4 CASES.

CASE HAS A MISSING VALUE FOR VARIABLES (VARIABLE NUMBER 3 IS THE
RESFONSE)

16 3
17 1 3
18 1
99 3
100 1

100




159
160

THERE ARE 158 CASES STAfING IN TEE ANALYSIS.

THE OBSERVATIONS, AFTER TREATMENT OF MISSING VALUES ARE:

WO~ Wb WM -

LAG1 VALUE
1543.5000
1528.8000

1473.8000°

1422.7000
1389.9000
1382.0000
1406.2000
1384.5000
1445.8000

- 1411.2000

1383.0000
1372.5000
1369.7000
1374.6000
1436.5000
1421.7000
1421.9000
1422,7000
1427.0000
1436.0000
1440.2000
1450.9000
1463.0000
1473.9000
1506.9000
1526.0000
1517.3000
1491.7000
1429.5000
1402.3000
1383.0000
1393.9000
1398.1000
1488.0000
1555.6000
1525.2000
1614.3000
1613.2000
1579.0000
1358.9000
1411.8000
1479.0000
1508.8000
1461.7000

KVALUE

1528.
1473
1422.
1389.

1382.

1406.
1384,
1445,
1411.
1383.
1372.
13€9.
1374.
1436.
1399.
1421,
1422
1427,
1436.
1440.
1450.
1463.
1473.
1506.
1526.
1517
1491,
1429.
1402
1383.
1393
1393.
1488
1555.
1525.
1614.
1613.
1579.
1358.
1411
1479.
1508.
1461,
1474.

8000

.8000

7000
9000
0000
2000
5000
8000
2000
0000
5000
7000
6000
5000
3000
9000

.7000
0000,

0000
2000
9000
0000
9000
9000
0000

.3000

7000
5000

.3000

0000

.9000

1000

.0000

6000
2000
3000
2000
0000
9000

.8000
0000 .

8000
7000
8000
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48

43
S50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78 .

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
101

1474.8000
1460.1000
1490.5000
1448.0000
1422.5000
1412.7000
1467.3000
1497.2000
1506.3000
1547.3000
1429.1000
1512.3000
1530.2000
1529.8000
1516.5000
1422.4000
1495.4000
1500.6000

©1488.6000

1516.3000
1512.5000
1505.0000
1497.7000
1436.1000
1457.2000
1556.6000
1546.6000
1508.9000
1478.5000
1481.0000
1462.8000
1520.5000
1532.2000
1500.1000

1493.6000 .

1481.5000
1501.5000
1521.4000
1467.0000
1466.1000

1480.6000

1544.1000
1543.5000
1539.9000
1490.5000
1495.5000
1560.1000
1559.4000
1548.5000
1584.7000
1608.6000
1524.6000

1460.
1490.
1448,
1422,
1412,

1467
1497

1506.
1547.
1429,
1512.
1530.
1529.
1516.
1422.
1495.
1500.
1488.
1516.
1512.
1505.
.7000

1497

1436.
.2000

1457

1556.
1546.
1508.
1478.
1481.
1462.
1520.
1532,
1500.
1493.
.5000

1481

1501.
1521.
.0000

1467

1466.
1480.
1544.
1543,
1539.
1490.
1495.
1560.
1559.
1548.
1584.
1608.
.5000

1624

1535.

1000
5000
0000
5000
7000

.3000
.2000

3000
3000
1000
3000
2000
8000
5000
4000
4000
6000
6000
3000
5000
0000

1000

6000
6000
S000
5000
0000
8000
5000
2000
1000
6000

5000
4000

1000
6000
1000
5000
9000
5000
5000
1000
4000
5000
7000
6000

0000
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102
103
104
105
106
107
108
109
110
11
112

13

114
115
116
117
. 118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

1535.0000
1521.4000
1513.2000
1569.7000
1555.6000
1512.3000
1499.6000

"1521.4000

1543.2000
1538.4000
1511.5000

-1503.0000

3735.5000
5655.4000
4450.3000
2827.0000
1667.7000
1576.1000
1587.0000
4287.1000
2072.0000
4156.3000
2898.6000

1513.8000
1805.6000

3933.3000
2806.1000
1545.6000

1516.7000

1521.5000
1504.5000
1627.5000
1475.0000
1460.0000
1463.4000
1465.3000

11493.2000

1472.7000
1493.7000
1482.7000
2023.8000
1623.4000
1527.9000
1515.4000
1485.1000
1527.8000
1527.0000
1520.2000
1510.0000
1484.7000
1478.8000
1503.8000

1521.
1513.
1569.
1555.
.3000

1512

1499.
1521.
1543.
1538.
.5000
0000

1511

1503.
3735.
5655.
4450.
.0000

.7000

2827
1667

1576.
1587.
.1000
.0000

4287
2072

4156.
2898.
1513.
1805.
3933.
2806.
1545.
-1516.
1521.
.5000
.5000
.0000

1504
1627
1475

1460.
1463.
1465.
1493.
.7000

1472

1493.
.7000
2023.
1623.
.9000

1482

1527

1515.
.1000
.8000
.0000

1485
1527
1527

1520.
1510.
.7000

1484

1478.
1503.
151s.

4000
2000
7000
6000

6000
4000
2000
4000

5000
4000
3000

1000
0000

3000
6000
8000
6000
3000
1000
6000
7000
5000

0000
4000
3000
2000

7000

8000
4000

4000

2000
0000

8000
8000
0000
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154
155
156
157
158
161
162
163
164
165

1516.
1495.
1489.
1488
1480.
1507
1506.
1522.
1534

0000
5000
6000

.2000

6000

.1000

5000
6000

.8000
1488.

0000

1495.
1489.
1488.
1480.
1463.
1506.
1522.
1534.
1488.
1483.

5000
6000
2000
6000
1¢00
5000
6000
8000
0000
00CO
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DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

OBSERVED

KVALUE I-4-co-$mveocdrmmmmbomrcd o c b mmvatbnmmebmm b b=

I I

«5655E+04 + 1 +

I I

I I

I I

I I

+ +

I I

I 1

I I

I 1

+ 1 4

I 1 I

I 1 I

I I

I I

+ 1 +

I 1 I

¢ I

I I

I I

+ +

I I

I I

I I

I 1 I

+ 1 1 +

I 1

I I

1 I

I I

+ +

I I

o I 1 1 I

I I

I 1 I

+ +

I 261 1 1 I

I 5%*2 11 I

I **1 I

1 1

.1359E+04 + 1 +

I I

[-+----+----+----+--—-+----4----+-——f+---;+—---+--~-+-I
.1359E+04 .5655E+04

OBSERVED LAGl VALUE
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MEDIANS =

LAGl VALUE

1503.

4000

DISPERSIONS =

LAGl VALUE

53.

7442

THE STANDARDIZED

WO d WHN =

LAGl VALUE

-2

-1
-2

-2.
-2.
.3965
-1.
.5202
-1.
~-1.
~-1.
-1.
.1759
.9768
.7517
.5489
.0651
.4205
.2586
.2177
.3750
.8811
.2402

-1

-1

-1
-1
-2

-2.
.9593
.2865
.9713
.4056
.0635

-1

.7461
.4726
.5508
-1.
~2.
~-2.
-1.
.2123
~1.
.7155
.2402

£016
1119
2588
8086

0717
4356
4877
2448
5164
5016

4215
2541

0374

KVALUE

1501.

0500

KVALUE

52.

OBSERVATIONS ARE:

4100

KVALUE

-1
-2

~N

.5295
.5199
.4949
.1208
.2715
.8098
.2238
.0542
.7144
.2524
.4528
.5062
.4127
.2316
. 9414
.5102
.4949
.4129
.2412
.1610
.9569
.7260
.5180
.1116
.4761
.3101
.1784
-1.
.8842
.2524
.0445
-1.
.2490
.0408
.4608
.1608
.1399

3652

9643
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
15
76
77
78
79
80
81
82
83
84
85
.86
87
88
89
90
91
92

2.0430
1.4067
-2.6887
-1.7044
-.4540
.1005
-.7759
.5321

| -.8057

.2400
-1.0308
-1.5053
-1.6876
-.6717
.1154
.0540
.8168
-1.3825
.1656
.4987
.4912
.2437
-1.5071
-.1489
.0521
.2754
.2400
.1693
.0298
.1061
-1.2522
.8596
.9899
.8038
.1023
.4633
.4168
.7554
.3182
.5359
.0614
.1823
.4075
.0354
.3349
.6773
.6940
.4242
.7573
.7461
.6791
.2400

t

1.4873
-2.7123
-1.702%

-.4207
L1479
.7508
.5009
.7813

~.2013
-1.0122
-1.4988
~1.6858

-.6440
.0735
.1002
.8825
-1.3728

L2147

.5562

.5486

.2948
-1.5007
.1078
.0036
.2376
.2910
.2185
.0754
.0639
-1.2393
.8367
.0599
.8691
.1498
.4303
.3826
-.7298

.3711

.. 244
~-.0181
.1421
.3730
.0086
.3883
.6497
.6669
-.3902
.8214
.8100
.7413
.2013
.1059

[

'
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93

94

95

96

97

98
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

-.1470

[

77

51

24

.0550
.0420
.8392
.5127
.9574
.3945
.5880
.3349
.1823
.2336
.9713
.1656
.0707
.3349
.7405
.6512
.1507
.0074
41.

5319

.2548
54.
24.
.0571
.3527
.5555
.7953
10.
49.
25,
.1935
.6229
45.
.2389
.7852
.2475
.3368
.0205
.3091
.5284
.8075
.7443
.7089
.1898
.5712
.1805
.3852
.6829
.2328
.4559
.2233
.3405

8319
6278

5797
3616
9600

2123

L1267
.1133
.9054
.5961
.0521
.3555
.6478
.3883
.2318
.3099
.0408
.2147
L0277
.3883
.8042
L7127
.1994
.0372
42,
S 79.
56.
25.
L1797
.4320
. 6400
53.
10.
50.
26.
2433
.8109
46.
24,
.8500
.2986
.3902
.0658
.4127

6341
2664
2727
2996

1588
8939
6631
6657

4082
s008

-.4970

.7832
.7184
.6821
.1498
.5409
.1402
.3501
.9742
.3345
.5123
.2738
.3043
.5104

178




147 .4540
148 .4391
149 .3126
150 .1228
151 -.3479
152 -.4577
153 .0074
154 .2344
155 -.1470°
156 -.2568
157 -.2828
158 -.4242
161 .0688
162 .0577
163 .3572
164 .5842
165 -.2865

.4951
.3654
.1708
-.3120

-.4245

.0525
.2853
.1059
.2185
.2452
.3902
.7241
.1040
.4112
.6440
.2490
.3444

L]

'PEA$SON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
( | KVALUE IS THE RESPONSE VARIABLE)

I

LAGi VALUE 1.00
'KVALUE .62

|

1.00

SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
{ | KVALUE 1S THE RESPONSE VARIABLE)

LAGI VALUE  1.00
'KVALUE .73

I
5

1.00

i
"ttﬁl"ﬁt"f""ﬁttf"it't't"QﬁQ'Q*QQtﬁt*'***ﬁit'*'ti'iti'**"'ﬁ*.*.t*

LEAST SQUARES REGRESSION

".N;’t""t'fﬁt"'tti"'
i

i

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE
LAGl VALUE .61790 .8;;97 9.81196 i .00000
CONSTANT 625.14990 109.59590 5.70413 .00000
SUM OF SQUARES = 34251960.00000
DEGREES OF FREEDOM - 156
SCALE ESTIMATE = 468.57640
109




VARIANCE - COVARIANCE MATRIX =

.3966D-02
-.6450D+01 .1201D+05
COEFFICIENT OF DETERMINATION (R SQUARED) = .38163
THE F-VALUE = 96.275 (WITH 1 AND 156 DF) P - VALUE = .00000
OBSERVED ESTIMATED RESIDUAL 'NO RES/SC
KVALUE KVALUE
1528.80000 1578.88500 -50.08472 1 -.11
- 1473.80000 1569.80200 -96.00171 2 -.20
1422.70000 1535.81700 -113.11690 3 -.24
1389.50000 1504.24200 -114.34190 4 -.24
1382.00000 1483.97500 ~101.97490 5 -.22
1406.20000 1479.09300 -72.89331 6 -.16
1384.50000 1494.04700 -109.54660 7 -.23
1445.80000 ‘ 1480.63800 -34.83801 8 -.07
1411.20000 1518.51600 -107.31570 9 -.23
1383.00000 1497.13600 -114.13610 10 -.24
1372.50000 1479.71100 -107.21120 11 -.23
1369.70000 1473.22300 -103.52320 12 -.22
1374.60000 1471.49300 -96.89307 13 -.21
1436.50000 1474,52100 -38.02075 14 -.08
1399.30000 1512.76900 -113.46900 15 -.24
1421.90000 1503.62400 -81.72400 -18 -.17
1422.70000 1503.74800 -81.04773 20 -.17
1427.00000 1504.24200 -77.24194 - 21 -.16
1436.00000 1506.89900 -70.89893 22 -.15
1440.20000 1512.46000 -72.26025 23 -.15
1450.90000 1515.05500 -64.15527 24 -.14
1463.00000 1521.66700 -58.66699 25 -.13
1473.50000 1529.14400 -55.24353. 26 -.12
1506.90000 1535.87900 -28.97864 27 -.06
1526.00000 1556.27000 -30.26953 . 28 -.06
1517.30000 1568.07200 -50.77148 29 -.11
1491.70000 1562.69600 -70.99585 30 -.15
1429.50000 1546.87700 -117.37740 31 -.25
1402.30000 1508.44400 -106.14380 32 -.23
1383.00000 1491.63700 -108.63670 33 ~-.23
1393.90000 1479.71100 -85.81116 34 ~-.18
1398.10000 1486.44600 -88.34644 35 -.19
1488.00000 1489.04200 -1.04150 36 .00
1555.60000 1544.59100 11.00891 37 .02
1525.20000 1586.36100 -61.16150 38 -.13
1614.30000 1567.57700 46.72290 39 .10
1613.20000 1622.63200 -9.43250 40 -.02
1579.00000 1621.95300 -42.95264 41 -.09
1358.90000 1600.82000 -241.92040 42 -.52
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1411.80000
1479.00000
1508.80000
1461.70000
1474.80000
1460.10000
1490.50000
1448.00000
1422.50000
1412.70000
1467.30000
1497.20000
1506.30000
- 1547.30000
1429.10000
1512.30000
1530.20000
1529.80000
1516.50000
1422.40000
1495.40000
1500.60000
1488.60000
1516.30000
1512.50000
1505.00000
1497.70000
1436.10000
-1457.20000
1556.60000
1546.60000
1508.90000
1478.50000
1481.00000
1462.80000
1520.50000
1532.20000
1500.10000
1493.60000
1481.50000
1501.50000
1521.40000
1467.00000
1466.10000
1480.60000
1544.10000
1543.50000
1539.90000
1490.50000
1495.50000
1560.10000
1559.40000

1464.82000
1497.50700
1539.03000
1557.44400
1528.34000
1536.43500

. 1527.35200

1546.13600
1519.87500
1504.11800
1498.06300
1531.80100
1550.27600
1555.89800
1581.23300
1508.18700
1559.60600
1570.66700
1570.42000
1562.20100

'1504.05700

1549.16400
1552.37700

'1544.96200

1562.07800
1559.73000
1555.09500
1550.58500

1512.52200

1525.56000
1586.97300
1580.80000
1557.50500
1538.72100
1540.26609
1529.02000
1564.67300
1571.90200
1552.06800
1548.05100
1540.57500
1552.93300
1565.225900
1531.61500
1531.05900
1540.01900
1579.25600
1578.88500
1576.66000
1546.13600
1549.22500
1589.14200

111

-53.01978
-18.50684

-30.22998

-95.74365
-53.54028
-76.33484
-36.85156
-98.13599
-97,37500
-91.41846
~-30.76294
-34.60059
-43.97583
-8.59875
-152,13290
4.10352
-29.40625
-40.86670
-53.91956
-139.80140
-8.65662
-48.56360
-63.77673
-28.66187
-49.57788
~54.72974
-57.39551
~-114.48470
-55.32202
31.04028
-40.37939
-71.90027
-79.00537
-57.72107
-77.46582
-8.52002
~-32.47314
~71.80249
~58.46777
-66.55139
-39.07471
-31.53284
-98.22925
-65.51526
-50.45911
4.08130
-35.75562
-38.98474
~-86.16040
-50.63599
10.87451
-29.74207

43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

.11
.04

.06
.20
.11

.16

.08
.21
.21
.20
.07
.07
.09
.02
.32
.01
.06
.09
.12
.30
.02
.10
.14
.06
.11
.12
.12
.24
.12
.07
.09
.15
.17
.12
.17
.02
.07
.15
.12
.14
.08
.07
.21
.14
.11
.01
.08
.08
.18
.11
.02
.06




1548.50000
1584.70000
1608.60000
1624.50000
1535.00000
1521.40000
1513.20000
1569.70000
1555.60000
1512.30000
1499.60000
1521.40000
1543.20000
1538.40000
1511.50000
1503.00000
3735.50000
5655.40000
4450.30000
2827.00000
1667.70000
1576.10C00
1587.00000
4287.10000
2072.00000
4156.30000
.2898. 60000
1513.80000
1805.60000
3933.30000
2806.10000
1545.60000
1516.70000
1521.50000
1504.50000
1627.50000
1475.00000
1460400000
1463..40000
.1465.30000
1493.20000
1472.70000
1493.10000
1482.70000
2023.80000
1623.40000
1527.90000
1515.40%00
1485.10000
1527.80000
1527.00000
1520.20000

1588.
1581.
1604.
1619.
1567.
1573.
1565.
1560.
1595.

. '1536.

155¢.
1551.
1565.
1578.
1575.
1559.
1553.
2933.
41109.
337s5.
2371.
1655.
1599.
1605.
3274,
1905.
3193.
2416.
1560.
1740.
3055.
2359,
1580.
1562
1565.
1554.
1630.
1536.
1527
1529.
1530.
1547
1535.
1548,
1541.
1875.
1628.
1569.
1561
1542
1569.
1568.

70900
97400
34300
11000
20600
63300
22900
16200
07400
36100
60600
75900
22900
69900
73400
11200
86000
33100
64500
00800
96500
62900
02900
76400
16700
44700
34400
20700
53300
83700
55200
05100
18200

.32500

29100
78700
78500
55800

.29C00

39100
56500

.80400

13700
11300
31600
66400
25500
24600

.52200
.795%00

18400
68900

112

-40.
.72559
.25745
.38965
-32.
.23254
.02930
.53760
-39.
-74.
~60.
-30.
~-22.
~40.
.23352

-56.
2181.
2722.

330.
-548.
.26490

-52
-52

-64

-704

-79.
-12.
2681.
-1202.
2250,
-294.
.40650

-902

245,
2192.
-249,.
-813.
.48242

-63

-40.
.79102

~-60

72.
-155.
-76.
-63.
.09070
.36475

-64
=37

-75.
~41.
~65.
482.
-252.
-100.
-53.
-76.
~-14.
-42.
~48.

20947

20642

47400
06140
00623
35876
02330
29944

11182
64000
06900
65530
00830

52856
02856
33600
16700
85300
74440

06690
46300
45190
45060

82495

71338
78880
55835
88977

10425
43726
41321
48390
26420
35530
84558
42175
99915
18384
48950

95

96

37

98
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

.09
.01
.01
.01
.07
.11
.11
.02
.08
.16
.13
.06
.05
.09
.14

-.12

.66
.81
.71
.17
.50
.17
.03
.72
.57
.80

-.63

.93
.52
.68
.53
.74
.14
.09
.13
.16
.33
.16
.14
.14
.08
.16
.09

-.14

.03

-.54

.21
.11
.16
.03
.09
.10




1510.00000
1484.70000
1478.80000
1503.80000
1516.00000

1495.50000

1489.60000
1488.200060
1480.60000
1463.10000
1506.50000
1522.60000
1534.80000
1488.00000

1483.00000

1564.
1558.
1542.
1538.
.35400
.89200

1554
1561

1549.
1545.
1544.
1540.
1556.
1556.
1565.
1573.
.59100

1544

48800
18500
55200
90600

22500
58000
71500
01900
39300
02200
97100
50900

113

-54.
-73.
-63.
-35.
-38.
-66.
-59.

-57

-64.
-76.
-49,
-33.
-31.

-85
-61

48755
48511
75195
10645
35400
39246
62549
.37988
11475
91870
89307
42249
17065
.50903
.59106

149
150
151
152

153
154 .

155
156
157
158
161
162
163

164

165

.12
.16
.14
.07
.08
.14
.13
.12
.14
.16
.11
.07
.07
.18
.13

1




DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

---LEAST SQUARES ~-~
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DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

~--LEAST SQUARES --~

STAND. RESIDUAL
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INDEX OF THE OBSERVATION
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I R R R R R R R R R N 22 R 2 222N 2R R 2R R

LEAST MEDIAN OF SQUARES REGRESSION

(AR R X2 RL SRRl SER RS RSS Rl S XS

THE MINIMIZATION OF THE

ON A TOTAL OF
1 SUBSAMPLES LED TO A SINGULAR SYSTEM OF EQUATIONS.
THE SOLUTION IS ONLY BASED ON THE GOOD SUBSAMPLES.

VARIABLE

COEFFICIENT

LAGl VALUE
CONSTANT

FINAL SCALE ESTIMATE

.97052
45.42432

COEFFICIENT OF DETERMINATION =

OBSERVED
KVALUE

1528.
1473.
1422
1389.
1382,
1406.
1384.
1445.
1411.
1383,
1372.
1369.
1374.
1436.
1399.
1421.
1422,
1427
1436.
1440.
1450.
1463.
1473.
1506.
1526.

80000
80000
70000
90000
00000
20000
50000
80000
20000
00000
50000
70000
60000
50000
30000
90000
70000

.00000

00000
20000
90000
00000
90000
90000
00000

EST

1543.
1529.
1475.
1426.

1394

1386.
1410.
1389.

1448

1415.

1387

1377.

1374

1379.
1439.
1425.
1425.
1426.
1430.
1439.
1443.
1453.
1465.
1475.
1507.

1001 SUBSAMPLES (OF

29.29300

IMATED
KVALUE

41300
15200
77400
18000
.34700
68000
16700
10600
.59900
01900
.65100
46000
.74300
49800
57300
21000
40400
18000
35400
08800
16400
54300
29200
87100
89800

116

2 POINTS OUT OF

RESIDUAL

-14.
-55.
-53.
~-36.
-12.

19.
-25.

56.
.39929

-37

-32.
.15076
.76025
.14282
.00171

-15
-7

57

-40.

-3.
.70398
.81982
.64648
.11182
.73572
.45105
.60791
.02917
.10205

-2

- W
W oow-IH»;

61877
35217
07385
28015
34729
51978
66663
69360

01929

27332
30969

80TH ORDERED SQUARED RESIDUAL IS PERFORMED.

158)

NO RES/SC
1 -.50
2  -1.89
3 -1.81
4 -1.24
5 -.42
6 .67
7 -.88
8 1.94
9 -1.28

10 -1.09

11 -.52

12 -.26

13 .00

14 1.95

15  -1.37

19 -.11

20 -.09

21 .03

22 .19

23 .04

24 .26

25 .32

26 .29

27 1.06

28 .62




1517.30000
1491.70000
1429.50000
1402.30000
1383.00000
1393.90000
1398.10000

'1488.00000

1555.60000
1525.20000
1614.30000
1613.20000
1579.00000
1358.90000
1411.80000
1479.05000
1508.80000
1461.70000
1474.80000

11460.10000

1490.50000
1448.00000
1422.50000
1412.70000
1467.30000
1497.20000
1506.30000
1547.30000
1429.10000
1512.30000

. 1530.20000

1¢ °3,80000
1546.50000
1422.40000
1495.40000
1500.60000
1488.60000
1516.30000
1512.50000
1505.00000
1497.70000
1436.10000
1457.20000
1556.60000
1546.60000
1508.90000
1478.50000
1481.00000

1462.80000

1520.50000
1532.20000
1500.10000

1526.43500
1517.99100
1493.14600
1432.78000
1406.38200
1387.65100
1398.22900
1402.30600
1489.55500
1555.16200
1525.65800
1612.13200

1611.06400

1577.87200
1364.26100
1415.60200
1480.82000
1509.74200
1464.03000
1476.74400
1462.47800
1491.98100
1450.73400
1425.98600
1416.47500
1469.46500
1498.48400
1507.31600
1547.10700
1432.39200
1513.13900
1530.51100

1530.12300 .

1517.21500
1425.88900
1496.73700

1501.78400 °
©1490.13700

1517.021060
1513.33300
1506.05400
1498.96900
1439.18500
1459.66300
1556.13300
1546.42700
1509.83900
1480.33500
1482.76100
1465.09800
1521.09700
1532.45200

117

47

27

-48.
10.
-16.
28.
-43,
-28.
-13.
50.
.73450
.81628
39.
-118.
79.
.06128
.71082
-13.
-94.
69.
.86304
-13.
©26.16272

27

17

26

-4.
-8.
.35400
.86914

-62

18.
96.
-9.
-37.
.33899
.66479
-19.
55.
.10303
.35193

=31

11
-32

.13477
-26.
-63.
-30.
-23.
.24927
.12938
85.
66.
-29.
88.
©1.06836
-32.
-218.
.53882
63.
.97961
04199

29138
64600

47974

38171

69446
04492
96216
64172

06384
97220

39832
76965

64429
02234

98145

23438
28625
82495

98438
00680
90845

62280
81482
51086

18359

52075
33276

01477
93689
53259
52734

96143
40186

29
30
31
32
33
34
35
36

37

38

-39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

-.31
-.90
-2.17
-1.04
-.80
.21
.00

. 2.93

2.25
-1.02
3.03
.04

. -1.09

-7.48
1.62
2.16

.96

-1.64

.37

.96
-1.50
-.96
-.45
1.74
.95
.27
1.36
-4.03
2.73
.58
-.02
-.47

-3.24

2.37
.13

.89

-.15
~.28
-.29
-2.15
.61
3.31
-.33
-1.28
-1.07
.02
~-.68

.38
-1.10




1493

1481.
1501.
1521.
.00000

1467

1466.
1480.
1544.
1543.
1539.
1490.
1495.
.10000

1560

1559.
1548.
.70000

1584

1608.
1624.
1535.
.40000

1521

1513.
1569.
1555.
1512.
1499.
1521.
.20000
1538.
1511.
.00000
3735.
5655.
4450.
2827.
.70000

1543

1503

1667

1576.
1587.
4287.
.00000
4156.
2898.
1513.
1805.
3933.
2806.
1545.
1516.
1521.
.50000
.50000

2072

1504
1627

1475,
1460.

RN i R R R AR S A el i By

.60000

50000
50000
40000

10000
60000
10000
50000
50000
50000
50000

40000
50000

60000
50000
00000

20000
70000
60000
30000
60000
40000

40000
50000

50000
40000
30000
00000

10000
00000
10000

30000
60000
80000
60000
30000
10000
60000
70000
50000

00000
00000

1501.
1494.
1483.
1502.
1521.
1469.
1468.
1482.
1544.
1543.
1539.
1491.
1496.
1559.
1558.
1548.
1583.
1606.
1525.
1535.
1521.
1514.
1568.
1555.
1513.
1500.
1521.
1543.
1538.
1512.
1504.
3670.
5534.
4364.
2789.
1663.
1575.
1585.
4206.
2056.
4079.
2858.
1514.
1797.
3862.
2768.
1545.
1517.
1522.
1505.
1624.
1476.

29800
99000
24700
65700
97000
17400
30100
37300
00100
41900
92500
98100
83400
52900
85000
27100
40400
59900
07600
16900
97000
01200
84600
16200
13900
81300
97000
12800
46900
36200
11300
79400
09200
52100
07900
95700
05800
63600
13200
33800
18800
56800
59400
79200
76300
79500
45700
40900
06700
56900
94200
93800

118

SRR A

-7

~13.
18.
18.
-54.

12

61.

~-3.
-49.

63.

-10.

36

25.
17.

-13.
-8.
55.

~13.

-42.

-13.
20.

21

-26.
-9.
2231,
1984.
-1083.

-1537
-1121
-87

11.
2701.

-2134

2098.
-1180.
-1344.

291

2135.
-1056.
-1223.

-28.

-17

121.
-149.
-16.

ol 5 A AR

.69836
48999
25330
74292
97046
.07422
.29919
72668
.50110
51880
42505
.51855
26599
.12939
35010
.42847
19580
30051
.92395
76941
77051
68787
24634
86206
53870
58691
.22949
.72766
96924
36230
38700
60500
739200
.52100
.37900
.85718
94226
46400
.13200
96200
58800
76800
.00550
50800
66300
19500
75696
.09106
.56738
93140
94240
93835

81
82
83
84
85
86
87

88

89

90

91

92

93

94

85

96

97

98
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

~.26

-.46
.62
.64
-1.88
-.10
.42
2.11
-.02
-.12
-1.69
.12
2.16
.00
-.35

S 1.24
.86
.61
.34
-.47
-.30
1.90
~.45
-1.46
-.46
.70
.72
-.16
-.92
-.32
76.17
67.75
-37.00
-52.49
-38.28
-3.00
.41
92,22
-72.85
71.69
-40.30
-45.91
9.93
72.90
-36.07
-41.76
-.98
.14
-.60
4.16
-5.12
-.58



1463.40000
1465.30000
1493.20000
1472.70000
1493.70000
1482.70000
2023.80000
1623.40000
1527.90000
1515.40000
1485.10000
1527.80000
1527.00000
1520.20000
1510.00000
1484.70000
1478.80000
1503.80000
1516.00000
1495.50000
1489.60000
1488.20000
1480.60000
1463.10000
1506.50000
1522.60000
1534.80000
1488.00000
1483.00000

1462.
1465.
.52400

1467

1494.
1474.
1495.
1484.
2009.
1620.
1528.
1516.
1486.
1528.
.40500

1527

1520.
1510.
1486.
1480.
1504.
1516.
1496.
.10800

1491

1489.
.37300

1482

1508.
.1507
1523.
1534.
14889.

38100
68000

60200 -
70600
08700
41100
55900
96300
27900
14700
74100
18200

80600
90600
35200
62600
88900
73000
83400

74900

09200

.51000

13500
97500
55500

119

-21

-12

539.
-386.
-93.
-12.
-31.

41.
.18176
.20532
-10.
-26.
.55225
. 23.
.11072
.22961
.23401
-2.
-9.
-19.
.59192
15.
11.
-46.
-6.

-1
-7
-7
11

-21
-7

-1

.01941
.38037
25.
.90173
18.
.38708

67554

99377

38880
15870
06323
87878
04736
05945

80566

20654

17371

90796

14917

27332

09033
66504
97534
55505

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
158
161
162
163
164
165

18.
-13.

-3.
.44
-=-1.
.40
.04
.25
.37
.89
.26
.79
.38
.72
.25
.10
.31
.66

.03
.01
.88
.75
.65
.42

41
18
18

06

-.05

.52
.40
.60
.22




DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

--~-LEAST MEDIAN OF SQUARES --~

.5534E+04
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DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE
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AR AA SRR R RS A SRR RSl A RS2 XX RS RYRS XS RRRXR R R R X R R 84

REWEIGHTED LEAST SQUARES BASED ON THE LMS

(222 AR A SRR RRA Rl SRRl Rl R 22 XA R R

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE
LAGl VALUE . .84784 .04583 18.49899 .00000
CONSTANT 226.43360 68.25236 3.31759 .00118

WEIGHTED SUM OF SQUARES 99323.21000

DEGREES OF FREEDOM . 129
SCALE ESTIMATE - 27.74793
VARIANCE - COVARIANCE MATRIX =
.2101D-02 ?
-.3126D+01 .4658D+04
COEFFICIENT OF DETERMINATION (R SQUARED) r .72624
THE F-VALUE = 342.213 (WITH 1 AND | 129 DF) P - VALUE = 0000

|
THERE ARE 131 POINTS WITH NON-ZERO WEIGhT.
i

AVERAGE WEIGHT - .82911
|
|
i
OBSERVED ESTIMATED - | RESIDUAL NO RES/SC WEIGHT
KVALUE KVALUE |
1528.80000 1535.06800 -6.26758 1 ~.23 1.0
1473.80000 1522.60400 ~-48.80432 2 -1.76 1.0
1422.70000 1475.97400 -53.27356 3 -1.92 1.0
1389.90000 1432.64900 -42.74902 4 -1.54 1.0
1382.00000 1404.84000 -22.84009 5 -.82 1.0
1406.20000 1398.14200 8.05786 6 .29 1.0
1384.50000 1418.66000 -34.15967 7 -1.23 1.0
1445.80000 1400.26200 45.53833 8 1.64 1.0
1411.20000 1452.23400 -41.03418 9 -1.48 1.0
1383.00000 1422.89900 -39.89893 10 -1.44 1.0
1372.50000 1398.99000 -26.48999 11 -.95 1.0
1369.70000 1390.08800 -20.38770 12 -.73 1.0
1374.60000 1387.71400 -13.11377 13 -.47 1.0
1436.50000 1391.86800 44.63184 14 1.61 1.0
1399.30000 1444.34900 -45.04907 15 -1.62 1.0
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-.29480
-3.72534
3.41394
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21.96313
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-21.15442
-61.64966
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76.20776
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18.10559
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33.24292
55.59229
28.41785
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9.08545
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-19.77954
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-3.78467
-4.72595
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2806.10000
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Appendix E: Corrolagrams

This appendix presents the correlograms, the ACF and PACF plots,
used in the results chapter. These plots were used to aid in the
determination of the order of autoregression appropriate for the AR(1)-
RLS model in the Results chapter. These correlograms were created

using S-Plus Statistical Software.
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Figure 19. ACF Plot For Site 852
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Figure 26. PACF Plot for Site 981.
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